样本量的计算公式为: N=Z²*σ²/d²,其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取。
样本量大小是选择检验统计量的一个要素,由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
样本容量的大小与推断:
估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。
样本的内容是带着单位的,例如:调查某中学300名中学生的视力情况中,样本是300名中学生的视力情况,而样本容量则为300。
样本容量的大小涉及到调研中所要包括的单元数,样本容量是对于研究的总体而言的,是在抽样调查中总体的一些抽样,比如:中国人的身高值为一个总体,随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本,某一个样本中的个体的数量就是样本容量。