一、参考文献著录格式 1 、期刊作者.题名〔J〕.刊名,出版年,卷(期)∶起止页码 2、 专著作者.书名〔M〕.版本(第一版不著录).出版地∶出版者,出版年∶起止页码 3、 论文集作者.题名〔C〕.编者.论文集名,出版地∶出版者,出版年∶起止页码 4 、学位论文作者.题名〔D〕.保存地点.保存单位.年份 5 、专利文献题名〔P〕.国别.专利文献种类.专利号.出版日期 6、 标准编号.标准名称〔S〕 7、 报纸作者.题名〔N〕.报纸名.出版日期(版次) 8 、报告作者.题名〔R〕.保存地点.年份 9 、电子文献作者.题名〔电子文献及载体类型标识〕.文献出处,日期 二、文献类型及其标识 1、根据GB3469 规定,各类常用文献标识如下: ①期刊〔J〕 ②专著〔M〕 ③论文集〔C〕 ④学位论文〔D〕 ⑤专利〔P〕 ⑥标准〔S〕 ⑦报纸〔N〕 ⑧技术报告〔R〕 2、电子文献载体类型用双字母标识,具体如下: ①磁带〔MT〕 ②磁盘〔DK〕 ③光盘〔CD〕 ④联机网络〔OL〕 3、电子文献载体类型的参考文献类型标识方法为:〔文献类型标识/载体类型标识〕。例如: ①联机网上数据库〔DB/OL〕 ②磁带数据库〔DB/MT〕 ③光盘图书〔M/CD〕 ④磁盘软件〔CP/DK〕 ⑤网上期刊〔J/OL〕 ⑥网上电子公告〔EB/OL〕 三、举例 1、期刊论文 〔1〕周庆荣,张泽廷,朱美文,等.固体溶质在含夹带剂超临界流体中的溶解度〔J〕.化工学报,1995(3):317—323 〔2〕Dobbs J M, Wong J M. Modification of supercritical fluid phasebehavior using polor coselvent〔J〕. Ind Eng Chem Res, 1987,26:56 〔3〕刘仲能,金文清.合成医药中间体4-甲基咪唑的研究〔J〕.精细化工,2002(2):103-105 〔4〕 Mesquita A C, Mori M N, Vieira J M, et al . Vinyl acetate polymerization by ionizing radiation〔J〕.Radiation Physics and Chemistry,2002, 63:465 2、专著 〔1〕蒋挺大.亮聚糖〔M〕.北京:化学工业出版社,2001.127 〔2〕Kortun G. Reflectance Spectroscopy〔M〕. New York: Spring-Verlag,1969 3、论文集 〔1〕郭宏,王熊,刘宗林.膜分离技术在大豆分离蛋白生产中综合利用的研究〔C〕.//余立新.第三届全国膜和膜过程学术报告会议论文集.北京:高教出版社,1999.421-425 〔2〕Eiben A E, vander Hauw J K.Solving 3-SAT with adaptive genetic algorithms 〔C〕.//Proc 4th IEEE Conf Evolutionary Computation.Piscataway: IEEE Press, 1997.81-86 4、学位论文 〔1〕陈金梅.氟石膏生产早强快硬水泥的试验研究(D).西安:西安建筑科学大学,2000 〔 2 〕 Chrisstoffels L A J . Carrier-facilitated transport as a mechanistic tool in supramolecular chemistry〔D〕.The Netherland:Twente University.1988 5、专利文献 〔1〕Hasegawa, Toshiyuki, Yoshida,et al.Paper Coating composition〔P〕.EP 0634524.1995-01-18 〔 2 〕 仲前昌夫, 佐藤寿昭. 感光性树脂〔 P 〕. 日本, 特开平09-26667.1997-01-28 〔3〕Yamaguchi K, Hayashi A.Plant growth promotor and productionthereof 〔P〕.Jpn, Jp1290606. 1999-11-22 〔4〕厦门大学.二烷氨基乙醇羧酸酯的制备方法〔P〕.中国发明专利,CN1073429.1993-06-23 6、技术标准文献 〔1〕ISO 1210-1982,塑料——小试样接触火焰法测定塑料燃烧性〔S〕 〔2〕GB 2410-80,透明塑料透光率及雾度实验方法〔S〕 7、报纸 〔1〕陈志平.减灾设计研究新动态〔N〕.科技日报,1997-12-12(5) 8、报告 〔1〕中国机械工程学会.密相气力输送技术〔R〕.北京:1996 9、电子文献 〔1〕万锦柔.中国大学学报论文文摘(1983-1993)〔DB/CD〕.北京:中国百科全书出版社,1996
高中英语整体性教学复述法的实践和体会为了使高中英语教学达到新大纲的要求,我在教学实践中作了些尝试,把课 堂教学由注重语言知识的讲授 课转变成注重语言能力的训练课,把培养和训练 学生的语感、语言习惯当作英语教学的中心任务。我在教学中 利用现行高中精 读课文,采用整体性教学复述法,努力把传授新知识和训练运用语言能力结合起 来,使课文教 学成为教师、教材、学生相互作用的积极过程,在培养学生语言 能力方面收到了良好的效果。在此谨从实践的 角度谈谈我的具体做法。复述是口头表达课文内容的言语过程,是给学生提供施展运用语言能力的机 会。这一训练不仅能提高学生 的听力、语感、改进语音语调,还能促进学生的 记忆、思维和自学能力。在实际教学中它已成为语言知识转化 为言语能力,培 养听、说、读、写能力的重要途径。为了获得有效的复述效果,我始终遵循记忆 规律,重视各 教学环节的密切配合,利用行之有效的方法,使学生积极参与到 这个有纲可循,有词可用,有话可说的四步教 学活动中来。第一步:(不要求预习课文)由教师将课文复述一遍,在复述过程中出现部 分生词短语,并用简明英语释 义。(可用板书、幻灯、投影等伴随教师复述。)第二步:根据教师复述的内容要求学生回答问题,目的在于检查学生是否理 解课文大概内容。在提问题时 要简略、清楚、易懂,注意调动所有学生的积极 性,可多用些"yes"、"No"questions。第三步:学生在阅读课文后回答一些比第二步复杂些的问题。(在回答问题 的过程中学生会自然地使用第 一步中所出现的生词短语。)然后再引导他们将这 些问题的答案串成复述内容。下面是高中英语第二册《体育运动》一课复述法三步的具体设计。 Presentation Retell the text with the following words and expressions onthe blackboard:joyful and relaxing;have a game of;be of great value;popularform of relaxation;amusement;go all about;build our Presentation According to what the teacher says answer the following:(1)Is it joyful and relaxing to have sports and games?(2)Do many people take part in different kinds of sports?(3)Some people seem to think that sports and games are unimportant things,don't they?(4)Do people have different ideas about sports and games?Step3,Learner Presentation Read the text again and try to pick out a topic sentence foreach the text paragraph by first paragraph:Sports and games are perhaps the most popular forms of can learn that from. Swimming in a river in summer Having a game of table tennis almost all can enjoy Watching a close game of … … …The second paragraph:They should not be treated only as amusements.(We can learnthatfrom the third and the fourth paragraph.)The third:Sports and games build our bodies(We can learn that fromplaying table tennis).The fourth:Sports and games are also very useful for character-training.(We can compare the lessons at school with activities on thesports fields.) 以上三步如下简示:teacher retelling→students answering"yes"or"NO" reading the passage questions→students answering further questions retelling it paragraph by paragraph它以递进的方式给学生提供了从内容到语言材料理解和掌握的渐进过程,为 第四步复述全篇课文创造了条 件。第四步:复述全篇课文,这一环节是对前三步所做大量训练工作效果的检测, 也是对学生大面积进行能力 训练的时机。利用板书、表格、表演以及主题画来 组织学生复述课文,周密组织好这一环节才能最后达到预期 教学目的。我在《体育运动》一课在第四步的板书是这样设计的:(以正中sports and games为中心,先由上至下, 再从左至右进行复述)。板书必须做到重点突出,具有概括性和条理性,并且简明生动,这样诱导学 生复述全篇课文不仅能达到对 课文内容及语言特点的理解,还能培养学生口头 造句和作文的能力。 复述法的实施过程也就是利用内容设置情景引导学生进行交际的过程。针对 不同的教材,不同的教学对象 和不同的时机灵活利用各种行之有效的方法,使 复述发挥更大的效用,以提高实际运用语言的能力,这是我在 课程设计中的首 要原则。
参考文献是论文写作中可参考或引证的主要文献资料,可以反映论文作者的科学态度和论文具有真实、广泛的科学依据。下面是我带来的关于化学论文参考文献的内容,欢迎阅读参考! 化学论文参考文献(一) [1] 王亮. 薄层等离子体与表面等离子体激元的实验研究[D]. 中国科学技术大学 2009 [2] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 中国科学技术大学 2014 [3] 马新欣. 基于COSMIC掩星数据的电离层分布特征及地震响应研究[D]. 中国地震局地球物理研究所 2014 [4] 王若鹏. 地震电离层前兆短期预报研究[D]. 武汉大学 2012 [5] 何昉. 地基大功率无线电波加热电离层对空间信息链路影响研究[D]. 武汉大学 2009 [6] 汪枫. 高频电波人工调制低纬电离层所激发的ELF波的研究[D]. 武汉大学 2011 [7] 邓忠新. 电离层TEC暴及其预报方法研究[D]. 武汉大学 2012 [8] 刘宇. 实验室研究化学物质主动释放形成的电离层空洞边界层的非线性演化[D]. 中国科学技术大学 2015 [9] 宋君. 返回式电离层探测技术应用研究[D]. 武汉大学 2011 [10] 冯宇波. 电离层等离子体分析仪的设计与研制[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [11] 李正. 电离层暴及“行星际扰动-磁暴-电离层暴”的观测研究[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [12] 赵莹. GNSS电离层掩星反演技术及应用研究[D]. 武汉大学 2011 [13] 牛田野. 特殊等离子体环境物理信息获取与处理的研究[D]. 中国科学技术大学 2008 [14] 黄勇,时家明,袁忠才. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust[J]. Plasma Science and Technology. 2011(04) 化学论文参考文献(二) [1] 徐凯. 硝基甲烷及其分解产物的从头算分子动力学研究[D]. 四川大学 2014 [2] 李倩,徐送宁,宁日波. 用发射光谱法测量电弧等离子体的激发温度[J]. 沈阳理工大学学报. 2011(01) [3] 李兵,张明安,狄加伟,魏建国,李媛. 电热化学炮内弹道参数敏感性研究[J]. 电气技术. 2010(S1) [4] 赵晓梅,余斌,张玉成,严文荣. ETPE发射药等离子体点火的燃烧特性[J]. 火炸药学报. 2009(05) [5] 张祎. 小口径固体电枢电磁轨道炮发射稳定性与初始装填过程影响规律的研究[D]. 南京理工大学 2012 [6] 弯港. 基于格子Boltzmann方法的流动控制机理数值研究[D]. 南京理工大学 2013 [7] 李海元. 固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[D]. 南京理工大学 2006 [8] 王争论. 中心电弧等离子体发生器及其在电热化学炮中的应用研究[D]. 南京理工大学 2006 [9] 林鹤. HMX共晶炸药的制备与理论研究[D]. 南京理工大学 2014 [10] 王娟. 2,3-二羟甲基-2,3-二硝基-1,4-丁二醇衍生物的合成及其应用研究[D]. 南京理工大学 2014 [11] 董岩. 多氨基多硝基苯并氧化呋咱及其金属配合物的合成与性能研究[D]. 南京理工大学 2014 [12] 刘进剑. 多氨基多硝基吡啶及吡嗪氮氧化物含能配合物的合成、性能及应用[D]. 南京理工大学 2014 [13] 赵国政. 氮杂环硝胺化合物的理论设计与母体合成[D]. 南京理工大学 2014 [14] 郭长平. 一步法微气孔球扁药成孔机理、燃烧性能及应用研究[D]. 南京理工大学 2013 [15] 金涌. 电热等离子体对固体火药的辐射点火及燃烧特性研究[D]. 南京理工大学 2014 化学论文参考文献(三) [1] 王晓东. 蛋白质复合体及蛋白质相互作用研究新策略[D]. 北京协和医学院 2012 [2] 罗孟成. H5N1亚型禽流感病毒DNA疫苗及分子佐剂研究[D]. 武汉大学 2010 [3] 吴志强. 应用RNA干扰技术抑制手足口病重要病原体的基因表达与复制研究[D]. 武汉大学 2010 [4] 刘丹. 乙型肝炎病毒Pol蛋白对NF-κB信号通路抑制作用的研究[D]. 武汉大学 2014 [5] 江淼. RNA结构在其诱导细胞先天免疫反应中的作用及其相关信号通路研究[D]. 武汉大学 2011 [6] 詹蕾. 呼吸道合胞病毒的纳米免疫分析新方法研究[D]. 西南大学 2014 [7] 易昌华. 麻疹病毒血凝素蛋白H诱导HeLa细胞凋亡及其分子作用机制研究[D]. 武汉大学 2014 [8] 杨景晖. H3N2亚型流感病毒Vero细胞冷适应株减毒特性及假病毒评价中和抗体的研究[D]. 北京协和医学院 2014 [9] 刘娟. 人呼吸道腺病毒55型的基因组学与病原学特征研究[D]. 中国人民解放军军事医学科学院 2014 [10] 喻正源. 全基因组测序与病毒捕获测序技术探讨EB病毒进化及整合规律的初步研究[D]. 中南大学 2013 [11] 陈晓庆. 天然产物抗单纯疱疹病毒感染活性评价及机理研究[D]. 南京大学 2014 [12] 李康. 抗流感病毒和EV71新靶标及新药物研究[D]. 北京工业大学 2014 [13] 王君. 白细胞介素-6受体介导A型流感病毒感染诱导白细胞介素-32及白细胞介素-6表达的研究[D]. 武汉大学 2013 [14] 申彦森. 基于内含子剪切的人工miRNA结构和靶向位点与基因沉默效率的关系研究[D]. 武汉大学 2009 [15] 金旭. 冠状病毒N7甲基转移酶甲基化核苷酸GTP的特性研究[D]. 武汉大学 2013 [16] 陶佳莉. SARS冠状病毒非结构蛋白nsp14的结构功能关系研究[D]. 武汉大学 2013 [17] 高国振. 宿主因子Cyclin T1和Sam68在Ⅰ型人免疫缺陷型病毒生活周期中的功能研究[D]. 武汉大学 2012 [18] 柳叶. 阻断HIV-1辅助受体CXCR4的新方法研究[D]. 武汉大学 2012 [19] 李围. Akt1蛋白质复合体的纯化鉴定及其相互作用蛋白质的功能研究[D]. 中国人民解放军军事医学科学院 2007 [20] 鞠湘武. H5N1型禽流感病毒损伤细胞溶酶体的机制研究和南极极端环境下科考队员的应激反应研究[D]. 北京协和医学院 2012 猜你喜欢: 1. 化学论文参考范文 2. 关于科学论文参考文献 3. 药学论文参考文献 4. 药学毕业论文参考文献 5. 毕业论文参考文献国家标准
Computational chemistry that can predict the spectra of a variety of compounds that cannot be obtained aspure compounds was used to study the highly sensitive detection of bromate in ion chromatography. Severalpossible ions, molecules, and their complexes were constructed by a molecular editor, and optimized bymolecular mechanics (MM2) and MOPAC (PM3) calculations. The possible electronic spectra of theseions, molecules, and complexes were then obtained by the ZINDO (INDO)-Vizualyzer in the CAChe lambda maximum (ìmax) of the spectra and the transition dipole were calculated using the ProjectLeaderprogram. The comparison of the experimental and predicted results indicated that Br3- was the probablereaction product, and that NO2- and ClO- accelerated the . INTRODUCTIONBromate is considered a carcinogen and the World HealthOrganization (WHO) has recommended the provisionalbromate guideline value of 25 mg/L, which is associated withan excess lifetime cancer risk of 7 10-5, because of thelimitations in the available analytical and treatment highly sensitive analytical method was therefore in ozonized water was detected with veryhigh sensitivity by ion chromatography with a postcolumnreaction detection using ultraviolet absorption. With theaddition of nitrite for the postcolumn reaction, the sensitivitywas improved 738-fold. The detection limit was mg/L, and the linear range was >4 orders of magnitude, to 10 mg/ The addition of ClO- improved thesensitivity and Eubanks3 examined bromide spectrophotometrically;they proposed a reaction mechanism and suggestedthat the end product is The proposed reactionsare as follows:In addition, bromate and chlorate were determined bypotentiometric titration after reduction with sodium nitrite was added in sodium bromide for the on-linehydrobromic acid generator in this system, and highlysensitive detection was However, the reactionmechanism and the final product have not been et studied bimolecular interactions and directlydetected the internal conversion involving Br(2P1/2) + I2initiated from a van der Waals dimer. The reaction complexwas formed from a van der Waals dimer precursor, HBrâ resulting product, highly vibrationally excited molecularI2, was monitored by resonance-enhanced multiphotonionization combined with time-of-flight mass HBr constituent of the precursor HBrâI2 was photodissociatedat 220 nm. The H atom departed instantaneously,allowing the remaining electronically excited Br(2P1/2) toform a collision complex, (BrI2)*, in a restricted region alongwith the Br + I2 reaction coordinate determined by precursorgeometry. Sims et reported the fentosecond real-timeprobing of bimolecular reaction Br + I2, and summarized anumber of trihalogen intermediates observed in matrixisolation chemistry can predict the electronic spectraof a variety of compounds that cannot be obtained as purecompounds. This tool was applied to study the highlysensitive detection of bromate in ion possible ions and molecules and their complexeswere constructed by a molecular editor, and optimized bymolecular mechanics (MM2) and MOPAC (PM3 and AM1)calculations. Their possible electronic spectra were thenobtained with the ZINDO (INDO/1)-Vizualyzer in theCAChe program. The lambda maximum (ìmax) of the spectraof the transition dipole were calculated using the ProjectLeaderprogram. The properties used for the calculation ofthe molecular mechanics were bond stretch, bond angle,dihedral angle, improper torsion, van der Waals, electrostatic(MM2 bond dipole), hydrogen bond, and cut-off distancefor van der Waals interactions ( Å). (van der Waalsinteractions were updated every 50 interactions.) Theparameters for the MOPAC calculation were geometry search* Author to whom correspondence should be sent.† Health Research Foundation.‡ Yokogawa Analytical + 3ClO- f BrO3- + 3Cl- (1)BrO3- + 5Br- + 6H+ f 3Br2 + 3H2O (2)Br2 + Br- f Br3- (3)J. Chem. Inf. Comput. Sci. 1998, 38, 885-888 885S0095-2338(98)00084-5 CCC: $ © 1998 American Chemical SocietyPublished on Web 08/14/1998options (precise, minimized by NLLSQ, optimized geometryby BFGS), and properties [Mulliken population, energypartitioning, polarizabilities, localize, thermo, rotationalsymmetry (C1)] in the CAChe program. The predicted datawere compared with those obtained . THEORYAccording to the Lambert-Beer law, the ratio of theintensity of the light of the inlet site (Io(î)) and the outletsite (I(î)) is given by the following equation:That is, absorbance A ) log10I/Io ) k(î)Dx, where the molarextinction coefficient (molar absorption coefficient) I ) Io 10k(î)Dx, and k(î): molar extinction coefficient is the following equation is given as the relation betweenabsorption intensity as measured experimentally and thatestimated theoretically:7The intensity of the spectrum is given by the followingequation:where jájjköâerjiñj2 is the transition is, molar absorptivity, k(î), is related to the transitiondipole. The following parameters are found in eqs 4-7: D,concentration of analyte; x, pass length of light; c, light speed;N, Avogadro’s constant; h, Planck’s constant; V, frequency;j, excited state; i, ground state; k, Boltzmann’s constant; er,transition dipole moment; and kö, polarized light . RESULTS AND DISCUSSIONThe computational chemical calculation was performedby the CAChe program from Sony-Tektronix (Tokyo) usinga Macintosh 8100/100 personal computer. The molarabsorptivity of several ions, molecules, and complexes weredirectly measured on spectra obtained by ZINDO-Visualizationafter their conformations were optimized by MM2 andMOPAC (PM3 and AM1). Their transition dipoles werecalculated by the ProjectLeader program using MM2and MOPAC (PM3 and AM1). The values of molarabsorptivity and the transition dipoles are summarized inTable 1. The values of their complexes with nitrite andchlorite are included. The energy values of angle and vander Waals obtained by the MM2 calculation are also givenin Table relation between the transition dipole and the molarabsorptivity was:where Y is molar absorptivity (I/mol-cm) and X is thetransition dipole (debye). The chromatographic sensitivityis directly related to the molar absorptivity of the molar absorptivity of Br3- and the Br2 + Br- complexwas very high, 190 000. The measurements of molarabsorptivity and the ìmax wavelength were not easilyobtained, but these values can be automatically calculatedusing the ProjectLeader program. The Br3- and the Br2 +Br- complex have similar structures, as shown in Figure complex between Br2 and Br- was automatically formedafter the optimization of the structure, and the heat offormation energy value was the lowest among the analyteslisted in Table 1; the values were about -106 kcal/mol. Thevalue of the complex was the same as that of Br3-. ThisTable 1. Properties of Analytesaanalyte HOF, kcal/mol ìmax, nm td debye ma, L/mol-cm angle, kcal/mol vwv, kcal/molBr- - - * 602 81 258 188200 462 595 208 24660 234 458 + NO2-/1 224 74550 + NO2-/2 239 91440 + NO2-/3 230 43370 + Br- 258 188250 + ClO-/1 228 30670 + ClO-/2 228 148400 - - * 410 336 214 168200 247 148760 + OCl- 243 34 + NO2- 209 30166 221 236800 229 209360 HOF: heat of formation (PM3); td: transition dipole; ma: molar absorptivity; angle: dihedral angle (MM2); vwv: van der Waals energy(MM2); *: molecule lacks electronic state ) + - ) (n ) 14) (8)[I(î) Io(î)] ) 10-k(î)Dx ) e-ln10âk(î)Dx (4)103âln 10âcNhs k(î)îdî ) 8ð3h2jájjköâerjiñj2 (5)f(theoretical) ) 8ð2mî3hjájjköâerjiñj2 (6)k(î) ) 1Dxlog10 I/Io µ jájjköâerjiñj2 (7)886 J. Chem. Inf. Comput. Sci., Vol. 38, No. 5, 1998 HANAI ET indicated that Br3- can be formed where Br2 and Brco-exist as the BrI2 question arises as to how NO2- and ClO- acted inthe reaction: did these ions form different compounds orcomplexes with bromide or bromine for the highly sensitivedetection of bromate? The Br2 + NO2- complex wasthusconstructed, and we optimized the structure by MM2and PM3 calculations. The Br2 and NO2- formed three typesof conformations, as shown in Figure 2. The structures Aand B were obtained as molecules and the structure C wasobtained as a transition state. Their energy values of heatof formation are given in Table 1 as Br2 + NO2-/1, Br2 +NO2-/2, and Br2 + NO2-/3, respectively. Their heat offormation energy values were low; the lowest energy valuewas -105 kcal/mol, about the same as that of the Br2 +Br- complex. The structure with the lowest energy valueis structure B in Figure 2. However, its molar absorptivitywas less than half of that of the Br2 + Br- complex. Thisresult suggested that NO2- may form a complex with Br2;however, such a complex may not be the final productbecause of the low sensitivity. The ìmax wavelengths ofstructures A, B, and C in Figure 2 were 224, 230, and 240nm, respectively, and were different from that of the Br2 +Br- complex and Br3-, whose ìmax was 258 nm. The ìmaxof 258 nm was the closest wavelength to that observedexperimentally (265 nm). This result also suggested thatsuch a complex may not be the final product. The formationof these complexes was supported by the negative values oftheir van der Waals energy calculated by MM2 (Table 1).Bromide did not form a complex with NO2-. Bromide,bromine, bromate, and nitrite were not highly sensitiveanalytes, due to their low transition dipole values and ì question was why the sensitivity measured in theexistence of ClO- was about the half of that measured inthe existence of NO2-. The reaction processes were estimatedaccording to the proposal of Chiu and value of molecular absorptivity of Cl2Br- (148 760) waslower than that of Br3- (188 200), and the ìmax wavelengthof Cl2Br- (247 nm) was also lower than that of Br3- (258nm). Therefore, the final sensitivity using ClO- as thereaction reagent was less than that using formed a complex with nitrite; however, thecomplex may be unstable due to the high energy value ofthe heat of formation. This complex is not a candidate forthe highly sensitive detection of bromate because of the lowtransition dipole value and ìmax wavelength. Bromine canform a complex with ClO-; however, the energy value ofheat of formation was high for a complex with a highertransition dipole. This means that the Br2 + ClO- complexmay be not a candidate for the highly sensitive detection ofbromate. The results just presented indicate that the highlysensitive detection of chlorate and iodinate can be achievedby using the techniques employed for the bromate sensitivity of chlorate and iodinate will be 90 and 111%of bromate; however, the ìmax wavelengths of Cl2Br- andI2Br- are 10 and 30 nm lower, respectively, than that ofBr2Br-. IfCl3- and I3- are the final products, the specificion generator should be constructed; however, the detectionwavelengths of Cl3- and I3- are further lower than those ofCl2Br- and I2Br-, and the selective detection may not beeasy. The computational chemical analysis of fluorate couldnot performed due to the lack of stable electron stableinformation for AM1 calculation can be used to optimize thesestructures; however, the present AM1 calculation did not givecomplex forms because of the fixed atomic distances. Theìmax wavelengths were usually shorter than that obtainedby PM3, and the values of molar absorptivity were example, the maximum atomic distances of Br3-calculated by PM3 and AM1 were and Å,respectively. Their ìmax wavelengths and their values ofFigure 1. Electron density of the optimized structures of Br2 +Br- complex and 2. Possible conformations of Br2 + + 4NO2- + 4H+ f Br2 + 4HNO3 + 2H2O (9)Br2 + Br- f Br3- (10)2BrO3- + 4ClO- + 6H+ fBr2 + Cl2 + 2HClO3 + 3H2O (11)Br2 + Br- f Br3- and Cl2 + Br- f Cl2Br- (12)可以预测有机混合物中一系列有机物色谱的计算化学能在离子色谱中进行溴离子的高灵敏度色谱分析。一些能测的离子,分子和他们的复合物分子结构能通过一个分子编辑器得到。再通过分子力学进一步优化和用MOPAC进一步计算来完善它,这些离子,分子和配和物的电子光谱就会在高度缓存程序中通过ZINDO (INDO)-Vizualyzer方法获得。那色谱和过渡偶极子的最大波长可以通过ProjectLeader程序计算出来。通过实验结果和预测结果的比较表明Br3-是可能的反应产物,而且其中的NO2-和CLO-加快了反应。1. 前言溴酸盐被认为是一种致癌物子和世界卫生组织已建议它的含量准则为25mg/L,这与人一生超过7*10-5 的癌症发病率有关,这是由于以前溴酸盐在有效分析和处理方法上受到限制。因此,一种高灵敏度的分析方法就发展起来了。溴酸盐在溴氧水中通过离子色谱能被精确的检测到,而离子色谱是使用紫外吸收进行柱后反应测定的。随着亚硝酸盐在柱后反应中的加入,灵敏度提高了738倍。检测线,并且从的线性范围大于四个数量级,CLO-的加入也使灵敏度提高了327倍。Chiu和Eubanks审查了甲基溴光度法,他们提出了一种反应机制,并认为那最终的产物是三溴化物。此外,溴和氯在减少硝酸钠加入量后可通过电位滴定法测得,溴化钠中加入硝酸钠是为了溶液中出现氢溴酸,从而获得精确的测定结果。但是,反应的机制和最终产物仍然是没有确定。图兹勒等人研究双分子的相互作用和发现内部转换Br(2P1/2) + I2开始于范德华二聚体。那反应产物形成范德华二聚体,。那最后产物是高聚物分子,他是通过共振性强的多光子电离法和质谱法相结合而测到的。那的反应产物溴化氢的键长是220nm。氢原子的瞬间离开,使得其余的电子激发Br(2P1/2),彼此发生复杂的碰撞,形成(BrI2)*。在一个限制的区域伴随着Br- + I2同样取决于反应初始条件。Sims et al,他报告了双分子反应Br- + I2方面的探究结果,总结出了反应中间体在进行分离实验研究时能被观察到。计算化学可以预测混合有机物中一系列有机物的电子色谱,计算化学还应用于精确检测离子色谱中的溴。一些可测的离子,分子和配合物的分子结构通过分子编辑器能被构造出来,再通过分子力学进一步优化和用MOPAC进一步计算。那么他们的电子色谱就会在高度缓存程序中通过ZINDO(INDO)-Vizualyzer方法获得。那色谱和过渡偶极子的最大波长可以通过ProjectLeader程序计算出来。计算化学中的程序还可以计算分子的键长,键角,二面角,扭转力,范德华力,静电力,氢键和由范德华力分离的距离( Å)。用MOPAC 计算方法计算的参数在下表1,并且各种特性都通过那CAChe程序显现出来了。然后,我们预测的数据就可以和这些实验得出的数据进行比较。文献第三部分:2. 结果与讨论计算化学的计算是由CAChe程序来完成的,这个程序是由东京的索尼泰克公司开发的,更适用于个人电脑。一些离子,分子和配合物的摩尔吸收率能在光谱中直接测量得到,而它们各自的光谱是离子,分子,配合物分子在经过进一步优化和计算后通过ZINDO-Visualization方法而得到的。那ProjectLeader程序用MM2和MOPAC方法可以计算它们的过渡偶极子。摩尔吸收率和过渡偶极子的测试值总结在表1中。它们的复合物如亚硝酸盐和亚氯酸盐的测试值也列在表1中。角度和范德华力的测试值通过MM2计算也被列在表1中。摩尔吸收率和过渡偶极子的关系是:Y = + - (n=14)(8)其中Y是摩尔吸收率(I/mol-cm),X是过渡偶极子(debye)。那色谱的灵敏度直接关系到样品的摩尔吸收率。Br3-的摩尔吸收率和Br2 + Br-配合物的摩尔吸收率都很高,大约是190000。摩尔吸收率和最大波长的大小是不容易测得的,但是这些值可以通过ProjectLeader程序自动计算出来。Br3和-Br2 + Br-配合物有类似的结构,如图1所示。在Br3-和Br2 + Br-之间的复合物是在结构的优化中自动形成的,它能量中的热量值是上述表1样品中最低的。那测量值大约是-106kcal/mol.那复合物的测量值是和Br3-的值一样的。这结果表明Br3-能形成诸如BrI2之类的复合物。那么问题就归于了解亚硝酸根和亚氯酸根是怎样参与反应的:这些离子之间可以形成不同的化合物吗?或者由于溴的高灵敏度能与溴化物和溴酸盐形成复合物吗?Br2 + NO2-形成的配合物被构造出来,并且我们通过MM2和PM3计算来优化那结构。那溴与亚硝酸盐就可能有三种不同的构造,这些构造都列在表2中。那A和B是获得的分子,而C是过渡态。它们的热量值分别列在表1中。它们的热量值都很低,其中最低的能量值是-105kcal/mol,这能量值是和Br+Br-的能量值一样的。在表2中可以知道最低能量值的构造是B化合物的结构。然而,它的摩尔吸收率比Br2 + Br-复合物的一半还少。这结果表明亚硝酸根能和溴形成复合物;然而,由于那低的灵敏度得知这种复合物不是最终产物,A,B,C的最大波长列在表2中,一次是224,230和240nm。显然,这是和Br+Br复合物不同的。那最大波长258nm最靠近那理论波长265nm。这结果也表明了那产物不是那最终产物。这些复合物的范德华力通过MM2和PM3计算得知是负值列在表1中。溴化物不能和亚硝酸根形成复合物。溴化物,溴酸盐,溴离子和亚硝酸盐都不是高灵敏度样品,这是由于他们的最长波长和过渡偶极子决定的。
179 浏览 4 回答
236 浏览 2 回答
99 浏览 3 回答
333 浏览 2 回答
170 浏览 2 回答
97 浏览 2 回答
207 浏览 3 回答
354 浏览 2 回答
115 浏览 4 回答
212 浏览 2 回答
230 浏览 4 回答
129 浏览 4 回答
230 浏览 5 回答
330 浏览 4 回答
133 浏览 3 回答