抓好基础知识,重视培养思维能力一、基础知识必须让学生切实学好 1.从学生已有的知识和经验出发进行教学 数学具有严密的逻辑性,前后知识联系紧密,某一新的知识点往往是前一部分知识的发展和延伸,同时又 是后一部分知识的基础。就课本上新知识点来说,一般包含着许多旧有知识。因此,充分利用学生已有知识和 经验学习新知识,能激发学生学习兴趣,提高学习积极性,又能形成良好的知识结构。如分数乘法中分数乘以 整数的意义没有变,仍是求几个相同加数的和的简便算法。教学时通过对原有知识的复习,学生是容易理解的 。在讲例1前我们可以提出:4个2是多少?用加法如何计算?用乘法如何计算?此时我们可以提问:整数乘法的 意义是什么?在此基础上,我们进一步提出:4个2/9是多少?用加法如何列式?用乘法又如何列式?学生列出(2/9)+(2/9)+(2/9)+(2/9),(2/9)×4。因为做分数加法时是以原来的分母做分母,分子部分是相同加数求和, 所以(2/9)×4=(2×4)/9=8/9;引导学生观察算式得出:分数乘以整数的方法是用分数的分子和整数相乘的积 作分子,分母不变。本册分数除法中分数除以整数的意义与整数除法意义相同,教学时可通过学生已有知识引 入,使学生掌握新知识。 2.通过实物、教具、学具或者实际事例使学生在理解的基础上掌握知识 小学阶段是儿童从形象思维向抽象逻辑思维发展的转变阶段,仍应重视运用实物、教具、学具进行教学, 增加感性认识,促进学生对知识的理解和掌握。如长方体和正方体是学生第一次接触的立体图形,如果空间观 念不强,在计算长方体的表面积与体积时就会混淆。教师要重视实物、教具的演示作用,教学时可分为以下三 步:一是让学生搜集大小不同、形状各异的长方体实物,引导学生观察,使学生对长方体的特征有一个初步的 感性认识。二是用“切土豆”的方式使学生认识长方体的特征,如取一个较大的土豆,切一刀切出一个平面, 切两刀出来两个面、一条棱,切三刀出来三个面、三条棱和一个顶点……切六刀就成为六个面、十二条棱、八 个顶点的长方体(注意面与面要成直角)。三是出示长方体的框架模型,让学生指出长方体的面、棱和顶点, 并画出长方体的直观图,引导学生对照长方体框架模型指出相对应的面、棱和顶点。这样才能使学生牢固掌握 长方体的特征,形成长方体的概念。 二、引导学生参与获取知识的思维过程,培养思维能力 1.计算教学要让学生参与探究法则和算理的形成 法则和算理是计算的根据,掌握法则和算理对于提高计算能力会起到重要作用。因此在计算教学时要让学 生参与探究法则和算理的形成,从而帮助学生熟练地掌握、使用算理和法则。 教学分数乘以分数的计算法则时,教师先出示例题:“一台拖拉机每小时耕地3/5公顷,3/4小时耕地多少 公顷?提问:如果把已知条件换成整数或小数应怎样计算?接着让学生根据整数和小数乘除法的算理给例题列 式,这样学生就能明白,分数乘除法的算理和计算法则是从整数和小数的计算法则中演绎过来的。然后教师出 示下列三幅图,引导学生观察、分析、思考,并演示计算过程,最后让学生讨论归纳出分数乘以分数的计算法 则,这样,学生得到的不仅仅是法则。 引导学生得出:任何物体都占有一定的空间,“物体所占空间的大小叫做物体的体积”。这样 教学,学生得到的绝不仅仅是一个文字概念。 2.几何教学让学生参与公式的推导过程 长方体的体积公式:长方体的体积=长×宽×高,学生记住这个公式并不难,但是要理解为什么计算长方 体的体积要这样计算是比较困难的,为此,我们必须让学生参与公式的推导过程。教学时可这样进行: (1)把一个土豆(或萝卜及其他容易切开的物体)切成一个长4厘米、宽3厘米、高2厘米的长方体,引导学 生观察后指导学生把这个长方体切成1立方厘米的小正方体,再让学生数一数这个长方体切成了多少个1立方厘 米的小正方体,并说明小正方体的总和就是这个长方体的体积,每个小正方体都是这个长方体的体积单位。然 后组织学生讨论:是怎么切的,长方体的体积应如何计算? (2)让学生把24块1立方厘米的正方体,摆成体积是24立方厘米的长方体,进行操作实验,然后整理出如下 的摆法: 每排块数 排数 层数 总块数(体积) 4 3 224 6 4 1 24 6 2 2 24 8 3 1 24 12 2 1 24 引导学生从上面实验得出:长方体的体积=长×宽×高。 为了全面提高教学质量,着眼于学生素质的提高,数学教学还应注重学生的操作和实践活动,在操作和实践活动中培养学生解决简单实际问题的能力。