
这个是模电的问题,说的详细了要几千字,你就明白PN节的工作原理就能知道为什么单向导电了。、
LED的发光过程包括三部分:
1、正向偏压下的载流子注入、复合辐射和光能传输。
2、微小的半导体晶片被封装在洁净的环氧树脂物中,当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。
3、光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。
LED(Light Emitting Diode),发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。
LED灯是一块电致发光的半导体材料芯片,用银胶或白胶固化到支架上,然后用银线或金线连接芯片和电路板,四周用环氧树脂密封,起到保护内部芯线的作用,最后安装外壳,所以 LED 灯的抗震性能好。
本文由1354589666贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 LED LED发光原理及特点 LED发光原理及特点 主讲人:张颖 LED照明概念 LED照明概念 LED( LED(Lighy Emitting Diode),又称发光二极管,它 Diode),又称发光二极管, ),又称发光二极管 们利用固体半导体芯片作为发光材料, 们利用固体半导体芯片作为发光材料,当两端加上正向 电压,半导体中的载流子发生复合, 电压,半导体中的载流子发生复合,放出过剩的能量而 引起光子发射产生可见光。 引起光子发射产生可见光。 Led发光原理 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片, 在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某 些半导体材料的PN结中,注入的少数载流子与多数载流子复合时 会把多余的能量以光的形式释放出来,从而把电能直接转换为光 能。PN结加反向电压,少数载流子难以注入,故不发光。这种利 用注入式电致发光原理制作的二极管叫发光二极管,通称 LED。 当它处于正向工作状态时(即两端加上正向电压),电流 从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜 色的光线,光的强弱与电流有关。电子和空穴之间的能量(带隙) 越大,产生的光子的能量就越高。光子的能量反过来与光的颜色 对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多, 桔色光、红色光携带的能量最少。由于不同的材料具有不同的带 隙,从而能够发出不同颜色的光。 LED照明光源的主流将是高亮度的白光LED。目前,已 LED照明光源的主流将是高亮度的白光LED。目前, 照明光源的主流将是高亮度的白光LED 商品化的白光LED多是二波长, LED多是二波长 商品化的白光LED多是二波长,即以蓝光单晶片加上 YAG黄色荧光粉混合产生白光 黄色荧光粉混合产生白光。 YAG黄色荧光粉混合产生白光。未来较被看好的是三 波长白光LED 即以无机紫外光晶片加红、 LED, 波长白光LED,即以无机紫外光晶片加红、蓝、绿三 颜色荧光粉混合产生白光,它将取代荧光灯、 颜色荧光粉混合产生白光,它将取代荧光灯、紧凑型 节能荧光灯泡及LED背光源等市场。 LED背光源等市场 节能荧光灯泡及LED背光源等市场。 LED的电源电路 LED所须之电源为直流、低电压,故传统上用以推 动钨丝灯泡或日光灯之电源并不适合直接推动LED灯 具。 而传统的定电压转换器必须经过修改后,才能适用 于推动LED灯具;电路修改需考量定电流输出、能源 转换效率、功率因素(power factor)等,均将考验电子 电路的 设计技术。 常见的两种解决方案( 常见的两种解决方案(一) 低频变压器及半波或全波整流电路 (一) 如图一所示,这种提供LED电源的方式非常简单只 需一个低频变压器,整流器,滤波电容还有一个用 来调整亮度的可变电阻。串联LED的数目主要由变 压器的圈数比所决定。一旦选用圈数比固定之后若 要得到一样的亮度,就很不容易改变LED的数目。 只能够藉由并联的方法增加LED的数目,但这种电 源架构很不容易做到并联的LED有相同的亮度。 优点:电路简单、成本低 缺点:体积大、电压模式,LED亮度会随着供应电 压之变化而有所改变;无法提供定电流输出;突波 电流较大。 常见的两种解决方案( 常见的两种解决方案(二) 低频变压器及半波或全波整流电路 (一) 如图一所示,这种提供LED电源的方式非常简单只 需一个低频变压器,整流器,滤波电容还有一个用 来调整亮度的可变电阻。串联LED的数目主要由变 压器的圈数比所决定。一旦选用圈数比固定之后若 要得到一样的亮度,就很不容易改变LED的数目。 只能够藉由并联的方法增加LED的数目,但这种电 源架构很不容易做到并联的LED有相同的亮度。 优点:电路简单、成本低 缺点:体积大、电压模式,LED亮度会随着供应电 压之变化而有所改变;无法提供定电流输出;突波 电流较大。 最新技术:LED照明之电源 最新技术 切换式定电流供应器(图三) 如图三所示,属于定电流的电源供应器,输出电流可调整非常适合LED 照明的应用。因为没有额外的可变电阻VR,所以电源使用率比前两种方 案高些。在LED的串联使用上非常方便,因为流经LED的电流固定不受 LED数目的影响。对于LED的并联使用仍无法保证并联路径LED的均流 效果。 目前大电流的LED照明电源大都采用前两种解决方案,但相较之下,切 换式定电流供应器的定电流输出模式更为适合,因为无论是在串联或并 联应用上,均可轻易控制每路LED电流,进而达到亮度一致;另外关于 输入电流的谐波失真尽可能低,对于总电流谐波失真(THD)大小及功率 因子值会因采用不同国家标准而有所不同,商品化的产品只要在设计上 符合该申请国家的标准既可,无须做到功率因子近似1,或THD小于10%, 否则在成本上将会提高很多而失去产品竞争力,至于THD规范可参考 IEC1000-3-2 class D,在设计时也要特别注意LED的开路与短路保护。 从过去使用上之不方便,发展出定电流模式之电源,当 作LED照明之电源。可允许LED串、并联之应用,较易 控制流经LED之电流、也就是较易控制LED亮度。 这种电源采用切换式技术所以体积远比前一种方 案小很多。 其中的VR是可变电阻用来调整LED亮度。若采用输出电压可 调变的电源供应器,对于LED的串并联应用会方便很多,目 前可调输出电压的电源价格偏高或是体积会比固定电压模 式的大些。 优点:技术很成熟,易取得;目前大部份LED照明的电源方式,电压负 载,变化稳定性佳。 缺点:切换式电源供应器对于LED之串联或并联,不容易提供固定电源 ,电流负载 (current load ) 变化大;所以无论是LED之串联或并联 应用,流经每一LED之电流不相同,反应到实际应用品上,即LED亮度 亦不易控制,因此解决方案较不利于LED照明电源。 (三)LED光源的基本特征 LED光源的基本特征 LED光源的基本特征 LED光源的基本特征 1、发光效率高 LED经过几十年的技术改良 经过几十年的技术改良, LED经过几十年的技术改良,其发光效率有了较大 的提升。白炽灯、卤钨灯光效为12 24流明 12- 流明/ 的提升。白炽灯、卤钨灯光效为12-24流明/瓦,荧 光灯50~70流明/瓦,钠灯90~140流明/瓦,大部 光灯50~70流明/ 钠灯90~140流明/ 50 流明 90 流明 分的耗电变成热量损耗。LED光效经改良后将达到达 分的耗电变成热量损耗。LED光效经改良后将达到达 50~200流明 流明/ 而且其光的单色性好、光谱窄, 50~200流明/瓦,而且其光的单色性好、光谱窄, 无需过滤可直接发出有色可见光。目前, 无需过滤可直接发出有色可见光。目前,世界各国均 加紧提高LED光效方面的研究, LED光效方面的研究 加紧提高LED光效方面的研究,在不远的将来其发光 效率将有更大的提高。 效率将有更大的提高。 LED光源的基本特征 LED光源的基本特征 2、耗电量少 LED单管功率 单管功率~瓦,采用直流驱 单管功率 ~ 瓦 单管驱动电压~伏,电流 ~18毫安, 毫安, 动,单管驱动电压 ~ 伏 电流15~ 毫安 反应速度快,可在高频操作。同样照明效果的情况下, 反应速度快,可在高频操作。同样照明效果的情况下, 耗电量是白炽灯泡的八分之一,荧光灯管的二分之一、 耗电量是白炽灯泡的八分之一,荧光灯管的二分之一、 运行成本大幅下降。 运行成本大幅下降。 日本估计,如采用光效比荧光灯还要高两倍的 日本估计, LED替代日本一半的白炽灯和荧光灯。每年可节约相 替代日本一半的白炽灯和荧光灯。 替代日本一半的白炽灯和荧光灯 当于60亿升原油 就桥梁护栏灯例, 亿升原油。 当于 亿升原油。就桥梁护栏灯例,同样效果的一支 日光灯40多瓦 而采用LED每支的功率只有 瓦,而 多瓦, 每支的功率只有8瓦 日光灯 多瓦,而采用 每支的功率只有 且可以七彩变化。 且可以七彩变化。 与传统的荧光灯相比,LED照明以高达50,000小 时的使用寿命为特色,而荧光灯只有13,000-18,000 小时,并且具有3倍的灯光一致性,具有一般荧光灯 不能配备的调光及循环能力,更节能。当然,节能是 我们考虑使用LED光源的最主要原因,也许LED光源要 比传统光源昂贵,但是用一年时间的节能收回光源的 投资,从而获得4~9年中每年几倍的节能净收益期。 LED寿命长达10万小时,意味着每天工作8小时, 可以有35年免维护的理论保障。 LED光源的基本特征 LED光源的基本特征 3、使用寿命长 LED光源有人称它为长寿灯 意为永不熄灭的灯。 光源有人称它为长寿灯, LED光源有人称它为长寿灯,意为永不熄灭的灯。 而对LED来说,发光效率能够达到白炽灯的 到10 来说, 而对 来说 发光效率能够达到白炽灯的5到 使用寿命可达到5万到 万小时,也就是5年到 万到10万小时 倍,使用寿命可达到 万到 万小时,也就是 年到 10年的时间,正常情况下正常使用 年无须维修。因 年的时间, 年无须维修。 年的时间 正常情况下正常使用5年无须维修 此免除频繁换灯之苦,其维护成本可大为降低。 此免除频繁换灯之苦,其维护成本可大为降低。 LED光源的基本特征 LED光源的基本特征 4、安全可靠性强 发热量低,没有紫外辐射,无热辐射 冷光源, 无热辐射, 发热量低,没有紫外辐射 无热辐射,冷光源,可 以安全抵摸:能精确控制光型及发光角度,光色柔和, 以安全抵摸:能精确控制光型及发光角度,光色柔和, 无眩光;不含汞、钠元素等可能危害健康的物质。内 无眩光;不含汞、钠元素等可能危害健康的物质。 置微处理系统可以控制发光强度,调整发光方式, 置微处理系统可以控制发光强度,调整发光方式,实 现光与艺术结合。 现光与艺术结合。 LED光源的基本特征 LED光源的基本特征 5、有利于环保 LED为全固体发光体 耐震、耐冲击不易破碎, 为全固体发光体, LED为全固体发光体,耐震、耐冲击不易破碎,废 弃物可回收,没有污染。光源体积小,可以随意组合, 弃物可回收,没有污染。光源体积小,可以随意组合, 易开发成轻便薄短小型照明产品,也便于安装和维护。 易开发成轻便薄短小型照明产品,也便于安装和维护。 6 色彩变化 就是要求所用的光源,可以按照预定设想、在色彩、 就是要求所用的光源, 可以按照预定设想、 在色彩、 在亮度、配置等各方面加以变化, 光源可利用红、 在亮度 、配置等各方面加以变化, LED光源可利用红、 光源可利用红 蓝三基色原理, 绿、蓝三基色原理,在计算机 控制下可以使三种颜色 同时具有256级灰度并任意混合,即可产生256 种颜色, × 256× 256=16777216种颜色, 形成例如水波纹 × 种颜色 式连续变色或定时色彩变化等,形成夜晚色彩绚丽的 式连续变色或定时色彩变化等, 灯光幻影,及各种图形。这种“多色彩、多图案” 灯光幻影,及各种图形。这种“多色彩、多图案”的 变化,正好显现了LED光源的特色。 变化,正好显现了 光源的特色。 光源的特色 7 图案变化 LED光源能已平滑缓慢的进行红、黄、蓝、绿、青、 橙、紫、白七种颜色的过度及变色。接通与切断LED 的时间以微妙计算,可以较方便地制成流水般跑动和 奔放跳动的动态变化。因此是传统光源无法比拟的, 并且变化方式由于受程序控制,所以可以编制无数种 程序形成无数种变化,LED光源构成的跑跳式灯光, 可以让人感到耳目一新,永不单调,心旷神怡,激情 荡漾,可充分体现灯光的动态效果。 8.冷光源 它还提供6500的相关色温,显色指数为 72。该系统能用在超市、便利店、杂货 店等手取式低温待售产品表面,散发通 用质量的灯光,以更大的灯光均匀度、 减少地板上扰人的眩光以及隐藏显示柜 光源等方式,提高产品的可销性。更适 合古建筑物的照明工程中. 9“高新尖”技术 与220V交流电控制的传统光源单调的发光效果 相比,LED光源是低压微电子产品,成功融合了计算 机技术、网络技术,无限遥控技术,嵌入式控制器技 术,所以亦是数字信息化产品。是半导体光电器件的 “高新尖”技术,具有在线编程,无限升级,灵活多 变的特点,为照明、显示、景观一次同时展现。 10. 电压: LED使用低压电源,供电电压在6-24V 之间,根据产品不同而异,所以它是一 个比使用高压电源更安全的电源,特别 适用于公共场所。低压运行,几乎可达 到100%的光输出,调光时低到零输出, 可以组合出成千上万种光色,而发光面 积可以很小,能制作成1平方毫米。 11. 稳定性: 10万小时,光衰为初始的50% 12. 适用性: 由于LED体积很小,每个单元LED小片是 3-5mm的正方形,所以可以制备成各种形 状的器件,并且适合于易变的环境.发光 体接近点光源(有利于LED的灯具设计) 13.响应时间短 其白炽灯的响应时间为毫秒级,LED灯 的响应时间为纳秒级 .所以,LED响应时 间短反应速度快. 白光LED的开发 的开发 白光 对于一般照明而言,人们更需要白色的光源。1998年 发白光的LED开发成功。这种LED是将GaN芯片和钇 铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光 (λp=465nm,Wd=30nm),高温烧结制成的含 Ce3+的YAG 荧光粉受此蓝光激发后发出黄色光发射, 峰值550nm。蓝光LED基片安装在碗形反射腔中,覆 盖以混有YAG的树脂薄层,约200-500nm。 LED基 片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧 光粉发出的黄光混合,可以得到得白光。现在,对于 InGaN/YAG白色LED,通过改变YAG荧光粉的化学 组成和调节荧光粉层的厚度,可以获得色温350010000K的各色白光。(如下图所示) 1
半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。一、 半导体发光二极管工作原理、特性及应用(一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、 GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示
假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在~之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。
5J两者的初温相同,末温相同,可知初末动能相同,所需的能量也相同
半导体二极管又称晶体二极管,简称二极管(diode);它只往一个方向传送电流的电子零件。它是一种具有1个零件号 接合的2个端子的器件,具有按照外加电压的方向,使电流流动或不流动的性质。几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的管压降:硅二极管(不发光类型)正向管压降,发光二极管正向管压降为。二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。发光二极管 发光二极管简称为LED。由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。 它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。 发光二极管的反向击穿电压约5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过管子的电流。限流电阻R可用下式计算: R=(E-UF)/IF 式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流。发光二极管的两根引线中较长的一根为正极,应按电源正极。有的发光二极管的两根引线一样长,但管壳上有一凸起的小舌,靠近小舌的引线是正极。 与小白炽灯泡和氖灯相比,发光二极管的特点是:工作电压很低(有的仅一点几伏);工作电流很小(有的仅零点几毫安即可发光);抗冲击和抗震性能好,可靠性高,寿命长;通过调制通过的电流强弱可以方便地调制发光的强弱。由于有这些特点,发光二极管在一些光电控制设备中用作光源,在许多电子设备中用作信号显示器。把它的管心做成条状,用7条条状的发光管组成7段式半导体数码管,每个数码管可显示0~9十个数目字。 发光二极管分类 发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。 1.普通单色发光二极管 普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。它属于电流控制型半导体器件,使用时需串接合适的限流电阻。 普通单色发光二极管的发光颜色与发光的波长有关,而发光的波长又取决于制造发光二极管所用的半导体材料。红色发光二极管的波长一般为650~700nm,琥珀色发光二极管的波长一般为630~650 nm ,橙色发光二极管的波长一般为610~630 nm左右,黄色发光二极管的波长一般为585 nm左右,绿色发光二极管的波长一般为555~570 nm。 常用的国产普通单色发光二极管有BT(厂标型号)系列、FG(部标型号)系列和2EF系列,见表4-26、表4-27和表4-28。 常用的进口普通单色发光二极管有SLR系列和SLC系列等。 2.高亮度单色发光二极管和超高亮度单色发光二极管 高亮度单色发光二极管和超高亮度单色发光二极管使用的半导体材料与普通单色发光二极管不同,所以发光的强度也不同。 通常,高亮度单色发光二极管使用砷铝化镓(GaAlAs)等材料,超高亮度单色发光二极管使用磷铟砷化镓(GaAsInP)等材料,而普通单色发光二极管使用磷化镓(GaP)或磷砷化镓(GaAsP)等材料。 常用的高亮度红色发光二极管的主要参数见表4-29,常用的超高亮度单色发光二极管的主要参数见表4-30。 3.变色发光二极管 变色发光二极管是能变换发光颜色的发光二极管。变色发光二极管发光颜色种类可分为双色发光二极管、三色发光二极管和多色(有红、蓝、绿、白四种颜色)发光二极管。 变色发光二极管按引脚数量可分为二端变色发光二极管、三端变色发光二极管、四端变色发光二极管和六端变色发光二极管。 常用的双色发光二极管有2EF系列和TB系列,常用的三色发光二极管有2EF302、2EF312、2EF322等型号,见表4-31。 4.闪烁发光二极管 闪烁发光二极管(BTS)是一种由CMOS集成电路和发光二极管组成的特殊发光器件,可用于报警指示及欠压、超压指示。其外形、内部结构图及内电路框图见图4-26和图4-27。 闪烁发光二极管在使用时,无须外接其它元件,只要在其引脚两端加上适当的直流工作电压(5V)即可闪烁发光。 5.电压控制型发光二极管 普通发光二极管属于电流控制型器件,在使用时需串接适当阻值的限流电阻。电压控制型发光二极管(BTV)是将发光二极管和限流电阻集成制作为一体,使用时可直接并接在电源两端。 LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 LED光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50% 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 单色光LED的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 LED光参数介绍 LED的光学参数中重要的几个方面就是:光通量、发光效率、发光强度、光强分布、波长。 1 发光效率和光通量 发光效率就是光通量与电功率之比。发光效率表征了光源的节能特性,这是衡量现代光源性能的一个重要指标。 2 发光强度和光强分布 LED发光强度是表征它在某个方向上的发光强弱,由于LED在不同的空间角度光强相差很多,随之而来我们研究了LED的光强分布特性。这个参数实际意义很大,直接影响到LED显示装置的最小观察角度。比如体育场馆的LED大型彩色显示屏,如果选用的LED单管分布范围很窄,那么面对显示屏处于较大角度的观众将看到失真的图像。而且交通标志灯也要求较大范围的人能识别。 3 波长 对于LED的光谱特性我们主要看它的单色性是否优良,而且要注意到红、黄、蓝、绿、白色LED等主要的颜色是否纯正。因为在许多场合下,比如交通信号灯对颜色就要求比较严格,不过据观察现在我国的一些LED信号灯中绿色发蓝,红色的为深红,从这个现象来看我们对LED的光谱特性进行专门研究是非常必要而且很有意义的。 LED光度测量原理 1 光强度的测量方法 把光强标准灯,LED和配有V(λ)滤光片的硅光电二极管安装和调试在光具座上,特别是严格地调灯丝位置,LED发光部位及接受面位置。 先用光强标准灯校准硅光电二极管,C=E/S 式中Es=IS/(d2s) d s是标准灯与接受器之间的距离,I s是标准灯的光强度,R s是标准灯的响应。 E s=C •R t式中E t是被测LED的照度,R t是被测LED的响应,则LED的光强度I t为:I t=E t •d2t 式中d t 是LED与接受面之距离。 对于LED来讲,其发光面是圆盖形状的,光分布是很特殊的,所以在不同的测量距离下,光强值会变化,偏离距离平方反比定律,即使固定了测量距离,但是由于接受器接受面积不同,其光强值也会变化。因此,为了提高测量精度,应该把测量距离和接受面积大小相对地给予固定为好。例如,测量距离按照GIE推荐采用316mm,接受器面积固定为10×10mm。在同一测量距离下,LED转角不同,其光强也相应地有变化,因此为了获得最佳值,最好读出最大读数R t为佳。 2 光通量的测量方法 光通量测量在变角光度计的转台上进行,转台上安转了LED,该转台在其水平面上绕着垂直轴旋转±90度,LED在垂直面上绕着测光轴旋转360度。在水平面上和垂直面上的转角的控制是通过步进马达来实现的。转台在导轨上随意移动,当测量标准灯时,转台应离开导轨。 测量时大转盘在水平面上绕垂直轴旋转,步进角度为°,正方向90°,反方向90°。LED自身也在旋转,在每一个水平角度下,垂直平面上每隔18°进行一次信号采集,转完360°之后共采集到20个数据,按下式计算总光通量。 如果大盘旋转0°~90°时,小盘转0°~360°即可。但是大盘旋转0°~90°时,有可能LED安装不均匀(不对称)而引起误差,因此最好的解决办法是大盘转-90°~0°~90°,小盘仍然转0°~360°,把大盘0°~90°和-90°~0°两个范围内绝对值相等的角度上的照度值取平均值来作为0°~90°内的值。 LED总光通量测量的第二种方法是积分求法。此方法的优点是简单易行,但测量精度不高。LED的总光通量计算方法如下,先计算离积分球入射窗口(入射窗口面积 A)1 距离上标准灯(光强值 I s)进入积分球内的光通量Φs,Φs=I s • A /I 2 读出接收器上的光电流信号i s,然后把LED置于窗口上,读出相应的接收器光电流信号it,则LED的总光通量Φ为: Φt=It/IsΦs•K 式中 K 为色修正系数。 3 LED的光谱功率分布测量方法: 发光二极管的光谱功率分布测量,目的是掌握LED的光谱特性和色度,再者是为了对已测得的LED的光度量值进行修正。 在测量LED光谱功率分布时,应注意以下几点,一个是在与标准光谱辐照度进行比较时由于标准灯的光谱辐强度比LED强得多,为了避免这个问题,最好在标准灯前加一个中性滤光片,使它的光谱辐强度接近于LED。 LED的光谱宽度很窄,为了准确地描绘LED的光谱分布轮廓,最好采用窄带波长宽度的单色仪进行测量,波长间隔为1nm为好。 按下式计算LED的光谱功率分布E t。 Etλ=Esλ•Itλ/Isλ 式中 i 是标准灯在波长 i 处的响应;E 是标准灯的光谱功率分布;i 是LED在波长λ处的响应。 LED的色坐标计算公式为: x=∫Etλ•xλdλ y=∫Etλ•ydλ z=∫Etλ•ydλ 色坐标为: x=X/(X+Y+Z) y=X/(X+Y+Z) 也可计算LED的主波长和色纯度。 发光二极管也与普通二极管一样由PN结构成,也具有单向导电性。它广泛应用于各种电子电路、家电、仪表等设备中、作电源指示或电平指示。 发光二极管的主要特性表 * cd(坎德拉)发光强度的单位 二、发光二极管的类型、主要参数 按其使用材料可分为磷化镓(GaP)发光二极管、磷砷化镓(GaAsP)发光二极管、砷化镓(GaAs)发光二极管、磷铟砷化镓(GaAsInP)发光二极管和砷铝化镓(GaAlAs)发光二极管等多种。 按其封装结构及封装形式除可分为金属封装、陶瓷封装、塑料封装、树脂封装和无引线表面封装外,还可分为加色散射封装(D)、无色散射封装(W)、有色透明封装(C)和无色透明封装(T)。 按其封装外形可分为圆形、方形、矩形、三角形和组合形等多种,图4-22为几种发光二极管的外形。 塑封发光二极管按管体颜色又分为红色、琥珀色、黄色、橙色、浅蓝色、绿色、黑色、白色、透明无色等多种。而圆形发光二极管的外径从¢2~¢20mm,分为多种规格。 按发光二极管的发光颜色又可人发为有色光和红外光。有色光又分为红色光、黄色光、橙色光、绿色光等。 另外,发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。 1.普通单色发光二极管 普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。它属于电流控制型半导体器件,使用时需串接合适的限流电阻。 图4-23是普通发光二极管的应用电路。 普通单色发光二极管的发光颜色与发光的波长有关,而发光的波长又取决于制造发光二极管所用的半导体材料。红色发光二极管的波长一般为650~700nm,琥珀色发光二极管的波长一般为630~650 nm ,橙色发光二极管的波长一般为610~630 nm左右,黄色发光二极管的波长一般为585 nm左右,绿色发光二极管的波长一般为555~570 nm。 常用的国产普通单色发光二极管有BT(厂标型号)系列、FG(部标型号)系列和2EF系列.常用的进口普通单色发光二极管有SLR系列和SLC系列等。 2.高亮度单色发光二极管和超高亮度单色发光二极管 高亮度单色发光二极管和超高亮度单色发光二极管使用的半导体材料与普通单色发光二极管不同,所以发光的强度也不同。 通常,高亮度单色发光二极管使用砷铝化镓(GaAlAs)等材料,超高亮度单色发光二极管使用磷铟砷化镓(GaAsInP)等材料,而普通单色发光二极管使用磷化镓(GaP)或磷砷化镓(GaAsP)等材料。。 3.变色发光二极管 变色发光二极管是能变换发光颜色的发光二极管。变色发光二极管发光颜色种类可分为双色发光二极管、三色发光二极管和多色(有红、蓝、绿、白四种颜色)发光二极管。 变色发光二极管按引脚数量可分为二端变色发光二极管、三端变色发光二极管、四端变色发光二极管和六端变色发光二极管。 常用的双色发光二极管有2EF系列和TB系列,常用的三色发光二极管有2EF302、2EF312、2EF322等型号,见表4-31。 4.闪烁发光二极管 闪烁发光二极管(BTS)是一种由CMOS集成电路和发光二极管组成的特殊发光器件,可用于报警指示及欠压、超压指示。 闪烁发光二极管在使用时,无须外接其它元件,只要在其引脚两端加上适当的直流工作电压(5V)即可闪烁发光。 表4-32是几种常用闪烁发光二极管的主要参数。 5.电压控制型发光二极管 普通发光二极管属于电流控制型器件,在使用时需串接适当阻值的限流电阻。电压控制型发光二极管(BTV)是将发光二极管和限流电阻集成制作为一体,使用时可直接并接在电源两端。 电压控制型发光二极管的发光颜色有红、黄、绿等,工作电压有5V、9V、12V、18V、19V、24V共6种规格。 表4-33为BTV系列电压控制型发光二极管的主要参数。 6.红外发光二极管 红外发光二极管也称红外线发射二极管,它是可以将电能直接转换成红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光控及遥控发射电路中。 红外发光二极管的结构、原理与普通发光二极管相近,只是使用的半导体材料不同。红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、黑色的树脂封装。 常用的红外发光二极管有SIR系列、SIM系列、PLT系列、GL系列、HIR系列和HG系列等
179 浏览 3 回答
207 浏览 3 回答
275 浏览 3 回答
129 浏览 4 回答
280 浏览 2 回答
250 浏览 2 回答
131 浏览 6 回答
330 浏览 5 回答
81 浏览 4 回答
230 浏览 3 回答
313 浏览 3 回答
271 浏览 5 回答
249 浏览 6 回答
272 浏览 7 回答
269 浏览 3 回答