高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 ,断 裂伸长率为 。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 以上的强度 和 以上弹性模量, 经热处理后可得到强度不变、 模量达 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 抗拉强度(GPa) 拉伸模量(GPa) 180 280 断裂延伸率(%) 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 24 280 12 115 6 230 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 230 一 一 一 一 一 115 29 280 68 330 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5).简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性.除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好.文中还展望了M5纤维的应用前景.前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展.但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差.纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2].通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度.因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题.作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来.聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3].由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能.1高性能纤维 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成.TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应.若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用.另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键.因此,其压缩和扭曲性能为目前所有聚合物纤维之最.M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5].图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5].图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在.图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构.由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能.表2和表3所列出的实验结果也证实了这一结论[16,19].如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16].从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构.有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高.图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示).单斜和三斜的晶胞参数分别为:单斜结晶: a= ,b= ,c= ,=90°,=107°,=90°三斜结晶:a= ,b= ,c= ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a= ,b= ,c= ,=84°,=°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度.图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16] M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为×104~×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维.其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 m.所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥.图7 M5纤维的热处理示意图 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示.在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大.对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能.M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维.在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的.因此,热处理温度与热处理时间对M5纤维的模量影响很大.4 M5纤维的性能 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象.Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的提高到,而经过400℃热处理的初生纤维压缩强度由原来的提高到.显然对于PIPD的初生纤维来讲,并非热处理温度越高越好.通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高.表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等.与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17].表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/()回潮率/%纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高.图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构.而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11].如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多. 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值.纤维试样放在一块1cm2的线网上.试样原始重量在之间.从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料.PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维.SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维.同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为.从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景.M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性.从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟.M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近.M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]. 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂.M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]. 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图.研究发现将1g试样材料放在一个开放的测试槽内,以℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示.从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关.从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别.通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似.表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等.M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力.与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究.相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用.
从18世纪60年代开始,我们的世界在第一次工业革命的引领之下,日新月异,发展迅猛,就如同打开了发展速度这个“潘多拉魔盒”一样,一发不可收拾。而与之对应的则是各类的新型产品,技术革命以及颠覆式的创新。邓公曾讲过,科技是第一生产力。而如今看来,的确如此。技术的提升创新甚至是革命,带来的是前所未有的惊喜和对传统产品巨大的冲击力。碳纤维便是如此应运而生。究竟碳纤维有何过人之处,今日且听笔者娓娓道来。
碳纤维管又称碳素纤维管,也称碳管,碳纤管,是采用碳纤维复合材料预浸入苯乙烯基聚脂树脂经加热固化拉挤(缠挠)而成。在制过程中,可以通过不同的模具生产出各种型材,如:不同规格的碳纤维圆管,不同规格的方管,不同规格的片材,以及其它型材:在制作过程中也可以包3K进行表面包装美化等等。而我们知道,碳纤维管的基础便是碳纤维,碳纤维是含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。碳纤维的微观结构类似人造石墨,是乱层石墨结构。碳纤维各层面间的间距约为到,各平行层面间的各个碳原子,排列不如石墨那样规整,层与层之间借范德华力连接在一起。
通常也把碳纤维的结构看成由两维有序的结晶和孔洞组成,其中孔洞的含量、大小和分布对碳纤维的性能影响较大。
当孔隙率低于某个临界值时,孔隙率对碳纤维复合材料的层间剪切强度、弯曲强度和拉伸强度无明显的影响。有些研究指出,引起材料力学性能下降的临界孔隙率是1%-4%。孔隙体积含量在0-4%范围内时,孔隙体积含量每增加1%,层间剪切强度大约降低7%。通过对碳纤维环氧树脂和碳纤维双马来亚胺树脂层压板的研究看出,当孔隙率超过时,层间剪切强度开始下降。由试验得知,孔隙主要分布在纤维束之间和层间界面处。并且孔隙含量越高,孔隙的尺寸越大,并显著降低了层合板中层间界面的面积。当材料受力时,易沿层间破坏,这也是层间剪切强度对孔隙相对敏感的原因。另外孔隙处是应力集中区,承载能力弱,当受力时,孔隙扩大形成长裂纹,从而遭到破坏。
即使两种具有相同孔隙率的层压板(在同一养护周期运用不同的预浸方法和制造方式),它们也表现处完全不同的力学行为。力学性能随孔隙率的增加而下降的具体数值不同,表现为孔隙率对力学性能的影响离散性大且重复性差。由于包含大量可变因素,孔隙对复合材料层压板力学性能的影响是个很复杂的问题。这些因素包含:孔隙的形状、尺寸、位置;纤维、基体和界面的力学性能;静态或者动态的荷载。
相对于孔隙率和孔隙长宽比,孔隙尺寸、分布对力学性能的影响更大些。并发现大的孔隙(面积>)对力学性能有不利影响,这归因于孔隙对层间富胶区的裂纹扩展的产生影响。
碳纤维兼具碳材料强抗拉力和纤维柔软可加工性两大特征,是一种新的力学性能优异的新材料。碳纤维拉伸强度约为2到7GPa,拉伸模量约为200到700GPa。密度约为到克每立方厘米,这除与原丝结构有关外,主要决定于炭化处理的温度。一般经过高温3000℃石墨化处理,密度可达克每立方厘。再加上它的重量很轻,它的比重比铝还要轻,不到钢的1/4,比强度是铁的20倍。碳纤维的热膨胀系数与其它纤维不同,它有各向异性的特点。碳纤维的比热容一般为。热导率随温度升高而下降平行于纤维方向是负值(到),而垂直于纤维方向是正值(32到22)。碳纤维的比电阻与纤维的类型有关,在25℃时,高模量为775,高强度碳纤维为每厘米1500。这使得碳纤维在所有高性能纤维中具有最高的比强度和比模量。同钛、钢、铝等金属材料相比,碳纤维在物理性能上具有强度大、模量高、密度低、线膨胀系数小等特点,可以称为新材料之王。
碳纤维除了具有一般碳素材料的特性外,其外形有显著的各向异性柔软,可加工成各种织物,又由于比重小,沿纤维轴方向表现出很高的强度,碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。碳纤维树脂复合材料抗拉强度一般都在3500兆帕以上,是钢的7到9倍,抗拉弹性模量为230到430G帕亦高于钢;因此CFRP的比强度即材料的强度与其密度之比可达到2000兆帕以上,而A3钢的比强度仅为59兆帕左右,其比模量也比钢高。与传统的玻璃纤维相比,杨氏模量(指表征在弹性限度内物质材料抗拉或抗压的物理量)是玻璃纤维的3倍多;与凯夫拉纤维相比,不仅杨氏模量是其的2倍左右。碳纤维环氧树脂层压板的试验表明,随着孔隙率的增加,强度和模量均下降。孔隙率对层间剪切强度、弯曲强度、弯曲模量的影响非常大;拉伸强度随着孔隙率的增加下降的相对慢一些;拉伸模量受孔隙率影响较小。
碳纤维还具有极好的纤度(纤度的表示法之一是9000米长纤维的克数),一般仅约为19克,拉力高达300kg每微米。几乎没有其他材料像碳纤维那样具有那么多一系列的优异性能,因此在旨度、刚度、重度、疲劳特性等有严格要求的领域。在不接触空气和氧化剂时,碳纤维能够耐受3000度以上的高温,具有突出的耐热性能,与其他材料相比,碳纤维要温度高于1500℃时强度才开始下降,而且温度越高,纤维强度越大。碳纤维的径向强度不如轴向强度,因而碳纤维忌径向强力(即不能打结)而其他材料的晶须性能也早已大大的下降。另外碳纤维还具有良好的耐低温性能,如在液氮温度下也不脆化。
所以综合来讲,碳纤维管具有强度高,寿命长、耐腐蚀,质量轻、低密度等优点。尺寸稳定、导电、导热、热膨胀系数小、自润滑和吸能抗震等一系列优异性能。并具有高比模、耐疲劳、抗蠕变、耐高温、耐腐蚀、耐磨损等。
而如今,碳纤维的应用也是非常的广泛,除了我们已知的航空航天材料以及军工产品外,在民用方面也是很丰富的。而碳纤维管更是与日常生活密不可分,得益于独特的硬度与轻度,,广泛应用于风筝、航空模型飞机、灯用支架、PC设备转轴、蚀刻机、医疗器械、体育器材等机械设备,所以,如果您要选择相关的产品,碳纤维制品绝对是比较好的选择,不过也正是因为它优良的产品特性,价格不比其他产品。可小编认为,好的产品,优质的体验,价格又何妨呢!
摘要:本文对碳纤维管材的性能、加工方法和应用进行了全面的介绍,说明碳纤维管材在民用和军用领域的重要意义,有助于相关行业对本类产品做进一步的了解,推进碳纤维管材在更大范围内得到应用。关键词:碳纤维管材 制作方法 应用1.概述碳纤维管又称碳素纤维管,也称碳管、碳纤管,这种材料是用碳纤维复合材料预浸入苯乙稀基聚脂树脂经加热固化拉挤缠绕做成的,碳纤维具有高强度、低密度、寿命长等特性,简单的说,比铝轻,比钢硬,是良好的民用、军用材料。近年来,我国在碳纤维方面的研究和利用也在突飞猛进地发展,碳纤维管作为应用最早、最广泛的碳纤维制品已被许多行业所接受,这些行业在积极主动使用碳纤维管作为原有金属制品的替代品,以期获得产品质量的提升。本文就针对碳纤维管的优势、加工方法及应用做一个综合性的论述。2.碳纤维管材的优点重量轻、强度高。碳纤维管材密度小、重量轻,其比重仅是钢材的四分之一,但是其抗拉强度很高,可达到3000MPa以上,是钢材的6-12倍,是塑料制品的几十倍。碳纤维管材轻质高强的特性,使其在运输和施工安装都具有显著的优势。耐腐蚀、抗老化,使用寿命长。碳纤维材料能耐酸、碱、盐、部分有机溶剂及其它腐蚀性侵蚀,在防腐蚀领域有其它金属无法比拟的优越性,除此之外,其还有较好的耐水性和抗老化性,因此无论在腐蚀性的环境、恶劣的气候还是潮湿的环境中,碳纤维管材的使用寿命都可达到25年以上。表面光滑美观,可设计性强。碳纤维管材是采用碳纤维复合材料预浸入苯乙稀基聚脂树脂经加热固化拉挤(缠挠)而成。在制作过程中,可以通过不同的模具生产出各种型材,如:不同规格的碳纤维圆管,不同规格的方管,不同规格的片材,以及其它不规则异型材,具有一定的设计性。经过打磨喷漆,其表面显得光滑美观,在制作过程中也可以包3K进行表面包装美化。3.碳纤维管材的规格碳纤维管材的型号规格多样,按成型工艺不同可以分为拉挤管和缠绕管;按纹路不同可以分为平纹、斜纹和纯黑;按表面处理不同可分为亮光、哑光;按形状不同可以分方管、圆管和异形管,其中异型管包括椭圆管、工字管、半圆型管等。一般的碳纤维管材的直径有10mm-800mm,长度最长可达10m。拉挤空心管1-25mm,壁厚,拉挤实心管(棒)直径,编制空心管直径,壁厚。4.碳纤维管材的制作方法内芯模具的制作。内芯模具要根据客户对管材规格的要求进行制作,因为纤维缠绕时受到压紧力,要求其集合形状基本保持不变,因而在芯模原材料的选择上,最好选择具有良好刚性的金属材料,如钢和硬铝,钢的密度比硬铝大,其硬度也比硬铝大,但钢的热膨胀系数不及硬铝。而高性能碳管制品是在高温下进行固化的,如果采用硬铝芯模,可通过硬铝热膨胀产生的固化内压,提高碳管的密度和力学性能。所以在高性能碳管的缠绕工艺中,芯模宜选用金属材料,而硬铝则是首选材料。芯模的封头设计尽量使用扁椭球式,这种形状可以保持筒身部分缠绕均匀,无堆积现象,防止出现“滑移“和“架空“现象。芯模的筒身部分可以制成等直径,但是如果制品长度很长,同时考虑到机床的加工精度以及脱模等条件的限制,等直径的筒身部分在应用中也许会存在困难,但是如果采取带锥度的芯模就可以解决这个问题,实验证明,1:1500-3500的锥度加工芯模筒身比较适宜。对较长的制品,制作芯模时可考虑分段对接芯模,以确保制品尺寸稳定。通常在缠绕之前要在芯膜表面涂刷脱模剂,以便于之后的脱模,但是对于高性能碳管,有机类脱模剂在固化过程中易渗入树脂中,造成制品缺陷,影响制品性能。如果在芯模表面涂覆一层含氟的脱模剂,就可以消除这种缺陷。根据规格要求,设计纤维层叠方式。首先确定要做的板材厚度,按照厚度算出需要的层数,然后按照0°、45°、90°、-45°的顺序叠层,然后模压成型。将纤维层卷到内芯模具, opp卷制包裹。碳纤维管的加工成型方法主要涉及以下三种:缠绕成型法,将碳纤维单丝缠绕在碳纤维轴上,特别适用于制作圆柱体和空心器皿;挤拉成型法,先将碳纤维完全浸润,通过挤拉除去树脂和空气,然后在炉子里固化成型,这种方法简单,适用于制备棒状、管状零件等;真空袋热压法,在模具上叠层,并覆上耐热薄膜,利用柔软的口袋向叠层施加压力,并在热压罐中固化。在碳纤维管的实际加工过程中,最基本的加工成型方法是缠绕法,这种方法易于实现机械化、自动化,比起其他方法,具有劳动条件好、劳动强度低、产品质量稳定、生产成本低等特点,所以应用十分广泛。具体方式又称为湿法缠绕,即将浸胶后的碳纤维集束,在一定张力控制下直接缠绕在芯膜上的工艺方法。其原理是采用卷管机上的热辊使预浸料软化,熔化预浸料上面的树脂胶粘剂。在一定张力下,在辊的旋转操作过程中,利用辊和心轴之间的摩擦,将预浸料连续卷到管芯上,直至所要求的厚度,然后通过冷辊冷却定型。根据成型工艺中预浸料的上料方法,可分为手动上料法和连续机械方法。缠绕线型的方法是保证碳纤维缠绕产品质量的重要前提,管道的使用情况不同,缠绕线型也不同,具体线型有环向缠绕、纵向平面缠绕和螺旋缠绕三种。缠绕成型法的基本操作过程是:首先,清理辊筒,然后热辊加热到设定温度,调整预浸料张力。在辊筒上不施加压力,将引布先在涂有脱模剂的管芯上包绕一圈,然后放下压辊,将引头布在热辊,同时将预浸料拉出来,贴在加热部分头布,与引头布相搭接。引头布的长度约为800-1200mm,视管径而定,引头布与胶布的搭接长度,一般为150-250mm。在卷制厚壁管时,在正常运行时,将芯模的旋转速度适当加快,靠近壁厚度设计放慢速度,以达到设计厚度,切断胶布。然后在保持压辊压力的情况下,继续使芯模旋转1-2圈。最后提升压辊,测量管坯外径,合格后,从卷管机上取出,送入固化炉中固化成型。烘烤硬化,去OPP,脱芯。将定型好的卷料从卷绕机取出,在固化炉中固化。管材固化后,去除芯模型,即可以得到复合材料缠绕管材,这个过程也叫固化脱模。在脱模过程中,车加工或钳工去除封头,再脱下制品,这有可能损及芯模表面,影响芯模的反复使用,可以利用耐高温胶粘剂补平或者焊接再磨削到位。 两端切去不光滑平整的部分,经过多道工序进行打磨、抛光。初步完成的碳纤维管还需要进一步加工,首先根据成品的规格,将半成品的两端多余部分去除,形成统一整齐的切面,然后经过专业打磨机和人工手工打磨、抛光,才能形成光滑而有光泽的表面。5.碳纤维管的连接方法:碳纤维管的连接方式有以下几种:最常用的是用环氧树脂来连接,连接成功后如果管子里面一般会有残留的树脂,可以用丙酮清洗干净。其次,利用碳纤维管自身的结构来连接也比较常见。用碳钛复合接头在碳纤维管成型的过程中进行复合连接,不过,在连接的时候必须要考虑好受力的方式和连接件的结构。另外,还可以用钻孔连接,只不过碳纤维管的强度大,硬度高,钻孔很不容易,不小心就会导致管子裂开,所以对操作水平有较高的要求。碳纤维管也可以用粘胶的方式连接,相对比较简单,要是使用机械方式就很困难,因为碳纤维产品本身的强度和硬度,很难找到比它性能好的加工工具,即便有也非常昂贵,而且磨损比较快。6.碳纤维管的应用碳纤维管材的应用范围非常广泛,其轻而强的力学特性和耐疲劳性,使其适用于航空、航天、建筑、机械设备、军工、体育休闲等结构材料;其耐腐蚀、耐热、垂直度好(±)、机械强度高的特性,使产品适用于线路板印刷设备的传动轴及医疗器械等;其强度高、抗老化,防紫外线、机械性能好的特性,适用于帐蓬、建筑建材、蚊帐、球袋、箱包、窗帘、广告展架、雨伞、风帆、健身器材、箭杆、球杆、高尔夫练习网、旗杆开关插销、水上运动器具等。碳纤维套管的保护线材、阻燃、增加线材强度等特性,近年来也颇受智能化领域的青睐。7.碳纤维管的选择用于碳纤维管生产方面的碳纤维含量多少,直接决定其力学性能表现和价值。在选择碳纤维管的时候,除了要关注碳纤维管中的碳纤维含量,也要重视用于生产碳纤维管的复合材料成分,不同的添加成分对产品的性能有不同的影响。但是最关键的一点,因为碳纤维复合材料属于高新材料,整个行业特别是民用这一领域起步比国外要落后二三十年,国内无论是碳纤维生产商还是加工制造厂家都数量有限,随着这个行业的兴起,很多小作坊式的加工商也跻身行列,造成了技术水平层次不齐,产品质量缺乏保证等问题。因而,在碳纤维管材的选择和订制方面,本文综合行业调查数据,罗列出该类型产品有一定影响力和品牌信誉的生产厂家,以供咨鉴。无锡威盛新材料科技有限公司(简称:威盛新材),是一家研发、制造碳纤维零部件的专业制造商,该公司拥有4000多平方的生产车间,配备大型热压机、热压罐、液压成型台、CNC高速铣床等多种设备,采用台湾及日本等国际一流品牌原材料,产品通过美国UL、SGS以及ISO9001:2008等相关认证,产品常年出口欧美等国家。略略8.碳纤维管的使用注意事项碳纤维管虽然具有质轻、坚实、抗拉、强度高等突出优势,但是在具体应用中也有一定的局限性,首先其制作依靠模具成型,难于更改尺寸,因而无法适应多尺寸多款式的订单,现在的加工厂家还是依靠大批量订做式订单。在使用中,很多消费者发现碳纤维产品放置在阳光下会逐渐变白,因此碳纤维管材最好不要放置在阳光下,尽量贮藏在避光处。除此之外,因为碳纤维管具有一定的导电性能,因此使用时必须特别注意防电,禁止使用在需要绝缘的设备上。9.结语碳纤维管材凭借其优良的性能在多个行业拥有广泛的应用前景,但是这种优良性能依靠的是有可靠保证的的原材料以及精湛的加工工艺,不是所有贴上“碳纤维”三个字的产品都能带来所期望的质量。所有正在或者准备使用碳纤维管材的厂家都需要具备相关的基础知识,才能对碳纤维管材进行有效甄别,为自身的产品带来质的飞跃。参考文献【1】《高性能碳纤维管缠绕芯模设计应用的几点体会》,王建华、居建国、甄华生,《全国复合材料学术会议》,1998年。【2】《碳纤维复合材料数控加工研究》,龚清洪、林勇、夏雪梅、楚王伟,《机械设计与制造》,。【3】《碳纤维复合材料的孔加工》,张万军、刘永奇、钱秀松,《纤维复合材料》,(版权所有,未经许可,禁止转载)
178 浏览 3 回答
194 浏览 3 回答
196 浏览 3 回答
182 浏览 3 回答
159 浏览 4 回答
276 浏览 3 回答
260 浏览 3 回答
349 浏览 3 回答
344 浏览 3 回答
177 浏览 3 回答
101 浏览 3 回答
150 浏览 3 回答
320 浏览 7 回答
94 浏览 3 回答
226 浏览 2 回答