在各种分析仪器的发明和研制过程中,有着许许多多的发人深省、鼓舞人心的历史事例,在这其中无数化学家做了大量艰苦卓绝的探索工作,取得了令人瞩目的成就,这些伟大的化学家们都具有令人敬仰的个人品质及孜孜不倦投身科学的奉献精神。在仪器分析发展史中有许多位科学家获得了诺贝尔奖,回顾这些对近代科学发展的重大贡献, 追踪科学家走过的足迹, 激发了我参与科研和追求创新的热情。核磁共振从其一开始就与诺贝尔奖联系在一起:1945 年以Bloch 和Purcell 为首的两个课题组同时发现了核磁共振现象,为此他们获得了1952 年诺贝尔物理学奖; Richard Ernst 教授因为他在高分辨率核磁共振二维波谱新技术方面的贡献而获得1991 年诺贝尔化学奖; Kurt Wuthrich 教授又因其在应用核磁共振技术测定溶液中生物大分子三维结构的新方法而获得了2002 年诺贝尔化学奖。由于核磁共振提供分子空间立体结构的信息,目前已经发展成为分析分子结构和研究化学动力学的重要手段,在有机化学、生物化学、药物化学等领域里得到了广泛的应用,这反映出了核磁共振技术的迅猛发展及其对世界前沿研究工作的巨大贡献。在质谱分析发展史中,先后有3 位科学家获得了诺贝尔化学奖。他们是:英国科学家Aston 设计了世界上第一台质谱仪,并使用该仪器发现了212 种同位素,将人类研究微观粒子的手段大大向前推进了一步,因而获得了1922 年诺贝尔化学奖;日本科学家田中耕一和瑞士科学家Kurt Wuthrich 共同开发出生物大分子的质谱分析技术和发展了基质辅助激光解析电离法,为发展生物大分子的鉴定与结构分析方法所做出了重大贡献,因而获得了2002 年诺贝尔化学奖瑞典皇家科学院称赞他们的研究工作“提升了人类对生命进程的认识”。随着科学技术的进步,仪器分析方法的发展日新月异,从航天工程使用的特种材料到生命科学的过程研究,先进的分析仪器和有效的分析方法都成为了不可或缺的手段。对于当今的大学生来说,由于计算机和互联网的迅速发展,使得他们获得最新科技信息的途径被大大地拓宽。因此,将最新的分析仪器和分析方法介绍给学生,对于他们理解最前沿的科技动向具有很有利的帮助作用,从而激发了他们对所学专业的热爱以及为科学献身的崇高理想。比如,傅立叶变换红外光谱(FTIR) 可提供有关分子结构的多种信息,辅以二阶导数、去卷积、曲线拟合等解析方法可以研究蛋白质二级结构的变化规律。近几年,应用FTIR从分子水平的角度研究癌症正是生物医学领域的热门课题[4 ] 。癌组织和正常组织的谱图表明癌组织样品与正常样品的红外光谱存在明显差异,通过谱图解析可直接或间接地阐明引起谱图变化的主要原因,以及细胞癌变的可能机理及病程进展各期。通过在教学过程中穿插相关的图片、实验数据等,生动地将正常组织与肿瘤组织的红外谱图在谱型、强度、频率等谱学参数上存在明显的差异展示给学生,从而使学生了解红外分析方法的重要意义。在对生物大分子的分析中,生物质谱与其他分析方法相比具有准确性和灵敏度高、快速、易于大规模和高通量操作等优点,因此在基因组学和蛋白质组学研究中扮演着越来越重要的角色[5 ] 。例如,在蛋白分析技术中生物质谱以其不可比拟的优越性能,已经成为蛋白质组学研究中必不可少的技术平台[6 ] ,在蛋白质鉴定、序列分析、定量、翻译后加工(修饰) 及蛋白质相互作用等方面已得到了较广泛的应用,其中用于蛋白序列分析的生物质谱鉴定方法有基质辅助激光解吸- 飞行时间- 肽质量指纹谱(MALDI - TOF- PMF) 、串联质谱的肽序列标签以及肽段的从头测序。随着人类探知未知世界的手段的不断进步,即使有先进分析仪器的不断涌现,仅借助于某一种单一的仪器分析方法往往也难以达到分析检测的目的,于是出现了分析仪器联用技术。从这个课程的学习,我体会到科学家们既积极探索、勇于创新的科学精神,所以我们要主动投入到学习和科研中去。