1、电接点温度仪表构成温度控制系统电接点温度仪表比较常见的有电接点双金属温度、电接点压力式温度计、温度开关和电接点水银温度计等,通常电接点温度以表的检测部分与指示部分合为一体(部分温度开关没有显示)。电接点温度仪表图1 常见电接点温度仪表①电接点温度仪表构成温度控制系统框图电接点温度仪表构成温度控制系统框图图2 电接点温度仪表构成温度控制系统框图 ②电接点温度仪表构成温度控制系统电气二次控制原理图电接点温度仪表构成温度控制系统电气二次控制原理图图3 电接点温度仪表构成温度控制系统电气二次控制原理图③说明1FU为电气二次回路电源熔断器;1HR为二次回路电源指示灯(红);2HR为运行指示灯(红);1HG为停机指示灯(绿);1KA、2KA为中间继电器;1SA为无自复位旋转开关(最好使用三挡旋转开关,中间位置为加热强制停止,两侧为自动或手动工作模式);1SS为停止按钮;1SB为启动按钮;1KM为接触器;1KH为热继电器;上限和下限报警触点来自于电接点温度计仪表。 ④工作原理a、在控温系统上电前,首先进行温度设定,将电接点双金属温度、电接点压力式温度计和温度开关等仪表上限报警值和下限报警值调至所需控制范围。b、无自复位旋转开关在中间位置为加热强制停止,无论手动或自动均不能启动加热设备;旋转开关在自动加热位置时,加热设备由仪表自动控制;旋转开关在手动加热位置时,加热设备由人工手动控制启停。c、自动工作模式下温度控制原理:温度控制系统有手动加热和自动控制两种工作模式,通过旋转开关1SA来选择;电气二次回路接通电源后,电源指示灯1HR常亮,(接触器1KM未动作时)1HG运行指示灯亮;当加热装置内的温度<仪表下限报警值时,仪表下限常开触点闭合、同时中间继电器1KA常开触点闭合,电加热器开始加热,温度加热系统升温,同时2HR运行指示灯亮;当加热装置内的实际温度上升到≥仪表下限报警值时,下限报警触点断开、同时中间继电器1KA常开触点断开,但由于接触器的常开触点1KM-1闭合自锁,加热器仍然加热,温度继续上升;当加热装置内的温度>仪表上限报警值时,仪表上限常开触点闭合、同时中间继电器2KA常闭触点断开,加热器断电,停止加热,同时1HG停机指示灯亮;当加热装置内的温度≤仪表下限报警值时,仪表上限常开触点断开、同时中间继电器2KA常闭触点闭合,此时加热器仍不能加热;当温度温度<仪表下限报警值时,加热装置才又开始加热,这样如此循环即可实现区间温度控制。d、仪表报警触点容量较小且通常为常开,1KA、2KA中间继电器作用在于触点增容、隔离干扰和报警触点状态转换,使用中间继电器有利于提高系统可靠性。e、图3为较完整的电气二次控制原理图,仅供大家参考,实际应用时可根据实际需要增加相关元件及修改原理图。⑤特点a、采用电接点温度仪表构成的温度控制系统,方法简单,所用部件少,成本低。b、但由于电接点温度仪表的测温元件与指示表盘合在一起,观察加热装置的实时温度略有不便。c、另外电接点温度仪表有惯性,测温精度和控制误差较大,因此这种方法常用在对温度控制要求不高的场合。2、位式显示控制仪温度控制系统位式显示控制仪温度控制系统的温度测量部分由温度传感器(热电偶或热电阻)、连接导线(热电偶用热电偶补偿导线,热电阻用3×铜芯电缆)和三位控制仪构成,温度测量和温度显示是分开的。位式控制目前以智能显示控制以为主,但还有部分指针式位式控制仪在使用。①用显示控制仪上限和下限报警构成温度控制系统用显示控制仪上限和下限报警构成的温度控制系统电气二次控制原理图与图3完全相同,在此以昌晖仪表YR-GFC803-01显示控制仪为例,介绍温度传感器和仪表的接线: 图4 位式显示控制仪仪表接线图②如何使用智能显示控制仪报警和回差进行温度控制?智能显示控制仪报警输出均为位式ON/OFF带回差,指针仪表没有“回差”这个功能。回差可以防止显示控制仪输出继电器在报警输出临界点上下波动时频繁动作,具体输出状态如下:图5 显示控制仪下限报警回差输出状态 图6 显示控制仪上限报警回差输出状态在弄清楚显示控制仪报警回差概念之后,使用智能显示控制仪时仅需要一个报警点也可以控制加热系统,温度控制使用智能显示控制报警回差在上限报警和下限报警时不相同:a、用显示控制仪上限报警控制温度比如要将温度控制在100-150℃之间,设定仪表上限报警值为150(用上限控制温度时,仪表上限报警值=需要控制的温度上限值),设定回差为50(用上限控制温度时,回差=需要控制的温度上限值—需要控制的温度下限值=150-100)。其工作原理为:自动工作模式下,加热系统上电后只要温度<150℃时仪表上限报警(常开)触点不动作,同时1KA触点闭合,此时系统升温;当温度≥150℃时仪表上限报警(常开)触点闭合,同时1KA触点断开,此时系统停止加热;当100℃≤温度<150℃时,在仪表回差(回差=50)作用之下上限报警(常开)触点仍然闭合,同时1KA触点仍然断开,此时系统依旧不加热;当温度<100℃时仪表上限报警(常开)触点断开,同时1KA触点闭合,此时系统升温,这样如此循环即可实现区间温度控制。图7 用显示控制仪上限报警控制温度的电气二次控制原理图b、用显示控制仪下限报警控制温度比如要将温度控制在100-150℃之间,设定仪表下限报警值为100(用下限控制温度时,仪表下限报警值=需要控制的温度下限值),设定回差为50(用下限控制温度时,回差=需要控制的温度上限值—需要控制的温度下限值=150-100)。其工作原理为:自动工作模式下,加热系统上电后只要温度<100℃时仪表下限报警(常开)触点闭合,1KA触点闭合,此时系统升温;当温度≤100≤150℃时在仪表回差(回差=50)作用之下下限报警(常开)触点仍然闭合,同时1KA触点仍然闭合,此时系统继续加热;当温度>150℃时,在仪表下限报警(常开)触点断开,同时1KA触点断开,此时系统停止加热;直至再次温度再次<100℃时仪表下限报警(常开)触点才闭合,同时1KA触点闭合,此时系统升温,这样如此循环即可实现区间温度控制。图8 用显示控制仪下限报警控制温度的电气二次控制原理图③位式控制仪温度控制系统特点 a、采用温度传感器和位式控制仪构成的温度控制系统,测温精度高、观察方便、可靠性及稳定性好。b、位式控制仪温度控制系统存在温度现象,因此这种方法常用在对温度控制要求不高的场合。3、使用PID调节器构成温度控制系统PID调节器应用于温度控制控制时常被称为温控器,温度测量部分由温度传感器(热电偶或热电阻)、连接导线(热电偶用热电偶补偿导线,热电阻用3×铜芯电缆)和温控仪构成,用于温度控制的温控仪可选择继电器控制输出、SSR固态继电器驱动电压输出、SCR可控硅过零触发脉冲控制输出、标准电流/电压控制输出这种控制输出方式,不同的控制输出的温控仪可构建温度控不同的温度控制系统,其配置也不同。①是不是采用PID调节器构建的温度控制系统就能取得好的控制效果?采用PID调节器构建的温度控制系统的控制效果跟系统配置和PID调节器控制算法有关系,国内大多数调节器生产厂提供的调节器为经典PID控制算法,在大滞后温度系统很难达到满意效果,不建议选用这类型温控器用于精密温度控制。用于温度控制的温控仪推荐使用模糊控制算法、人工智能算法、神经网络算法、模糊神经网络算法、Fuzzy-PID算法、广义预测算法、遗传PID控制算法的调节器,才能取得好的控制效果。如果您可阅读《温控仪常见控制算法对比》这篇文章,深入了解这些控制算法的PID调节器,对您合理选用调节器非常有帮助。②温控仪+接触器构成的温度控制系统温控器+接触器构成的温度控制系统电气二次控制原理图如所示,此时必须选择继电器控制输出的温控器。图9 温控器+接触器构成的温度控制系统的电气二次控制原理图a、温控仪+接触器构成温度控制系统工作原理温控仪+接触器构成的温度控制系统与采用位式显示控制仪温度控制系统电气二次控制原理一样,但其工作原理有很大差别:采用位式控制仪时接触器仅在实际温度达到需要控制温度的上限或下限时才动作;采用温控仪时接触器在实际温度远低于所需要控制温度值时一直闭合,当温度临近控制温度值的一定范围内开始断开且间隔一定时间后又闭合,实际温度越接近控制温度值,继电器断开和闭合频率越高;实际温度超过控制温度值时接触器断开不再动作,这样如此循环即可实现区间温度控制。 b、特点◆在加热过程中通过接触器点动开关动作来调整加热装置的通电时间,对防止加热过程温度过冲有很好的改善,温度偏差远低于位式控制仪表的控制结果。◆实际温度临近控制温度值时接触器动作频繁,会影响加热器和接触器使用寿命。 ③温控其+固态继电器构成温度控制系统温控仪+固态继电器构成的温度控制系统构成如图10所示,此时温控器必须选择继电器控制输出。温控仪直接驱动一支固态继电器(SSR)便可进行大容量的控制,当加热器为三相时,温控器的输出驱动3只固态继电器,固态继电器输入端可串或并联,而加热器可接成三角型或星型,另外还要加上相配套的散热器进行散热。这种控温系统适用于电加热器的容量较大时的场合。固态继电器(SSR)与接触器相比,是一种没有机械运动,不含运动零件的继电器,但它具有与机电继电器本质上相同的功能。SSR是一种全部由固态电子元件构成的无触点开关元件,他利用电子元器件的点,磁和光特性来完成输入与输出的可靠隔离,利用大功率三极管,功率场效应管,单项可控硅和双向可控硅等器件的开关特性,来达到无触点,无火花地接通和断开被控电路。图10 温控仪+固态继电器的温度控制系统构成 a、特点◆在加热过程中通过固态继电器无触点开关动作来调整加热装置的通电时间,对防止加热过程温度过冲有很好的改善,温度偏差远低于位式控制仪表的控制结果。◆实际温度临近控制温度值时加热器通电频繁,电流冲击会影响加热器使用寿命。④温控器+电力调整器+可控硅构成温度控制系统温控器+电力调整器+可控硅构成的温度控制系统是目前最好的温度控制方式。电力调整器也称为三相可控硅交流调压器,其与带1-5V、4-20mA的温控器、PLC或DCS配套使用。温控器+电力调整器+可控硅构成的温度控制系统主要用与工业电炉的加热控制、大型风机水泵软启动节能运行控制;负载类型可以是三相阻性负载、三相感性负载及三相变压器负载;三相负载可以是中心接地负载、中心不接地负载、内三角形负载及外三角形负载。 a、温控器+电力调整器+可控硅温度控制系统构成温控器+电力调整器+可控硅温度控制系统所选用的温控器应该是先进控制算法的调节器,其控制输出为4-20mA、1-5V。图11 温控器+电力调整器+可控硅温度控制系统构成图 b、特点◆在加热过程中通过通过对电压、电流和功率的精确控制,从而实现精密控温。◆凭借温控仪先进的数字控制算法,优化了电能使用效率。对节约电能起了重要作用。◆这种温度控制系统构成复杂,投资最大,控制效果最好。结束语 温度控制仪表的种类很多,采用不同的温度仪表可以构成各种温度控制系统,实际应用时应根据需要而定。昌晖仪表先进PID控制算法的温控器YR-RJD就非常适合复杂工况的温度控制系统,无超调和欠调,性能与国外进口调节器媲美。点击图片进入温控器选型温控器
基于MCS-51单片机温控系统设计的电阻炉论文字数:17255.页数:42 论文编号:JD471 摘 要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用。 单片机是随着超大规模集成电路技术的发展而诞生的。由于它具有体积小、功能强、性价比高等特点。把单片机应用于温度控制中,采用单片机做主控单元,无触点控制,可完成对温度的采集和控制的要求。所以广泛应用于电子仪表、家用电器、节能装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。周期作业式的电阻炉,可供实验室、工矿企业、科研单位作元素分析测定和一般小型钢件淬火、退火、回火等热处理时加热用。原电阻炉需与温度控制器配套使用,由检测端的热电偶信号输送给温度指示调节仪,继而控制接触器对电阻炉供电,实现电阻炉温的测量、指示及自动控制。电阻炉温波动较大,控制精度低。本文主要介绍单片机在电阻炉温控中的应用,对温度控制模块的组成及主要所选器件进行了详细的介绍。并根据具体的要求本文编写了适合本设计的软件程序。关键词:单片机;电阻炉;炉温;控制系统 目 录摘要………………………………………………………………………………… ⅠAbstract…………………………………………………………………………Ⅱ第1章 绪论………………………………………………………………………… 课题背景…………………………………………………………………… MCS-51系列单片机………………………………………………………2第2章 总体设计电路图及工作原理…………………………………………… 总体方案设计……………………………………………………………… 电阻炉的单片机温控原理…………………………………………………7第3章 系统硬件设计…………………………………………………………… 系统硬件电路设计……………………………………………………… 硬件设计电路原理图…………………………………………………… 各元件说明……………………………………………………………… 19第4章 系统软件设计…………………………………………………………… 编程思路………………………………………………………………… 编程流程图……………………………………………………………… 23第5章 MCS-51单片机温控电阻炉技术特性…………………………………… 25总结………………………………………………………………………………… 26致谢………………………………………………………………………………… 27参考文献…………………………………………………………………………… 28附录…………………………………………………………………………………29附录1 硬件设计的电路…………………………………………………… 29附录2 程序………………………………………………………………… 30附录3 外文翻译…………………………………………………………… 38以上回答来自:
本设计的温度测量及加热控制系统以 AT89S52 单片机为核心部件,外加温度采集电路、键盘及显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传感器 DS18B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定在这一温度。人性化的行列式键盘设计使设置温度简单快速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论上的控制算法,使控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统级功能单元的优势,在不减少功能的前提下有效降低了硬件成本,系统操控简便。 实验证明该温控系统能达到 ℃的静态误差,℃的控制精度,以及只有 的超调量,因而本设计具有很高的可靠性和稳定性。 关键 词: 单片机 恒温控制 模糊控制 1引 言 温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 硬件 系统的设计 1、电路总体原理框图 温度测量及加热系统控制的总体结构如图 1 所示。系统主要包括现场温度采集、实时温度显示、加热控制参数设置、加热电路控制输出、与报警装置和系统核心 AT89S52单片机作为微处理器。 图 1:系统总体原理框图 温度采集电路以数字量形式将现场温度传至单片机。单片机结合现场温度与用户设定的目标温度,按照已经编程固化的模糊控制算法计算出实时控制量。以此控制量控制固态继电器开通和关断,决定加热电路的工作状态,使水温逐步稳定于用户设定的目标值。在水温到达设定的目标温度后,由于自然冷却而使其温度下降时,单片机通过采样回的温度与设置的目标温度比较,作出相应的控制,开启加热器。当用户需要比实时温度低的温度时,此电路可以利用风扇降温。系统运行过程中的各种状态参量均可由数码管实时显示。 2、温度采集电路的设计 温度采集电路模块如图 2 示。DS18B20 内部结构主要由四部分组成:64 位光刻 ROM、 温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。其中 DQ 为数字信号输 入/输出端;GND 为电源地;VDD 为外接供电电源输入端。 2图 2:温度采集电路 DS18B20 中的温度传感器可完成对温度的测量,以 12 位转化为例:用 16 位符号扩展的二进制补码读数形式提供,以 ℃/LSB 形式表达,其中 S 为符号位。 这是 12 位转化后得到的 12 位数据,存储在 18B20 的两个 8 比特的 RAM 中,二进制中的前面 5 位是符号位,如果测得的温度大于 0,这 5 位为 0,只要将测到的数值乘于 即可得到实际温度;如果温度小于 0,这 5 位为 1,测到的数值需要取反加 1再乘于 即可得到实际温度。 3、键盘和显示的设计 键盘采用行列式和外部中断相结合的方法,图 3 中各按键的功能定义如下表 1。其中设置键与单片机的 INT 0 脚相连,S 0 −−S 9 、YES、NO 用四行三列接单片机 P0 口,REST键为硬件复位键,与 R、C 构成复位电路。模块电路如下图 3: 表 1:按键功能 按键 键名 功能REST 复位键 使系统复位RET 设置键 使系统产生中断,进入设置状态S 0 −−S 9 数字键 设置用户需要的温度YES 确认键 用户设定目标温度后进行确认NO 清除键 用户设定温度错误或误按了 YES 键后使用3图 3 键盘接口电路 显示采用 3 位共阳 LED 动态显示方式,显示内容有温度值的十位、个位及小数点后一位。用 P2 口作为段控码输出,并用 74HC244 作驱动。— 作为位控码输出,用 PNP 型三极管做驱动。模块电路如下图 4: 4、加热控制电路的设计 图 4 显示接口电路 用于在闭环控制系统中对被控对象实施控制,被控对象为电热杯,采用对加在电热杯两端的电压进行通断的方法进行控制,以实现对水加热功率的调整,从而达到对水温控制的目的。对电炉丝通断的控制采用 SSR-40DA 固态继电器。它的使用非常简单,只要在控制端 TTL 电平,即可实现对继电器的开关,使用时完全可以用 NPN 型三极管接成电压跟随器的形式驱动。当单片机的 为高点平时,三极管驱动固态继电器工作接通加热器工作,当单片机的 为低电平时固态继电器关断,加热器不工作。控制电路图如下图 5: 4图 5 加热控制电路 5、报警及指示灯电路的设计 当用户设定的目标温度达到时需用声音的形式提醒用户,此时蜂鸣器为三声断续的滴答滴答的叫声。在本系统中我们为用户设计了越限报警,当温度低于用户设置的目标温度 10 度或高于 10 度时蜂鸣器为连续不断的滴答滴答叫声。当单片机 输出高电平时,三极管导通,蜂鸣器工作发出报警声。 为低电平时三极管关断,蜂鸣器不工作。 D1 为电热杯加热指示灯, 低电平有效;D0 为检测到 DS18B20 的指示,高电平有效;D10 为降温指示灯,低电平有效。报警及指示灯电路如下图 6 示: 图 6 报警及指示灯电路 5软 件系统的设计 系统的软件由三大模块组成:主程序模块、功能实现模块和运算控制模块。 1、主程序模块 主程序主要完成加热控制系统各部件的初始化和实现各功能子程序的调用,以及实 际测量中各个功能模块的协调在无外部中断申请时,单片机通过循环对外部温度进行实时显示。把设置键作为外部中断 0,以便能对数字按键进行相应处理。主程序流程图如下图 7: 6图 7 主程序流程图 72、功能实现模块 以用来执行对固态继电器及电热杯的控制。功能实现模块主要由中断处理子程序、温度比较处理子程序、键盘处理子程序、显示子程序、报警子程序等部分组成。键盘显示及中断程序流程图如下图 8: 3、运算控制模块 图 8 键盘、显示、中断 子程序流程图 该模块由标度转换、模糊控制算法,及其中用到的乘法子程序。 标度转换 16式中 A 为二进制的温度值, A0 为 DS18B20 的数字信号线送回来的温度数据。 8单片机在处理标度转换时是通过把 DS18B20 的信号线送回的 16 位数据右移 4 位得到二进制的温度值。其小数部分通过查小数表的形式获取。程序流程图如下图 9: 开始将28H低4位与29H高4位组合成一个字节将合成的字节(整数部分)送29H单元将29H单元低4位送A给DPTR赋常数表格2首地址将查到的数值(即小数部分)送30H单元结束 模糊控制算法子程序 图 9 标度转换子程序流程图 该系统为一温度控制系统,由于无法确切确定电炉的物理模型,因而无法建立其数学模型和传递函数。加热器为一惯性系统,我们采用模糊控制的方法,通过多次温度测量模糊计算当用户设定目标温度时需提前关断加热器的温度,利用加热器自身的热惯性使温度上升到其设定温度。每隔 5 摄氏度我们进行一次温度测量,并当达到其温度时关断加热器记录下因加热器的热惯性而上升的温度值。从而可以建立热惯性的温度差值表,在程序中利用查表法,查出相应设定温度对应的关断温度。通过实验数据我们可以看出,当水温从 0℃加热到 50℃这段温度区域,其温度惯性曲线可近似成线性的直线,水温从 50℃加热到 100℃这段温度惯性曲线可近似成另一条线性的直线段。通过对设置的目标温度与温控系统监测温度进行差值处理就可近似的求出单片机的提前关断温度。程序流程图如图 10: 94.源程序见附录[2] 图 10 模糊控制算法子程序流程图 设计 总结 我们的温度控制系统是基于 AT89S52 单片机的设计方案,她能实时显示当前温度,并能根据用户的要求作出相应的控制。此系统为闭环系统,工作稳定稳定性高,控制精度高,利用模糊控制算法使超调量大大降低。软件采用模块化结构,提高了通用性。本设计的目的不仅仅是温度控制本身,主要提供了单片机外围电路及软件包括控制算法设计的思想,应该说,这种思想比控制系统本身更为重要。 1、设计所达到的性能指标 温控系统的标度误差我们将标准温度计和温控系统探头放人同一容器中,选定若干不同的温度点,记 录下标准温度计显示的温度和温控系统显示的温度进行比较。测量数据如下表 2 所示: 表 2 标准温度计测量的温度和温控系统显示的温度 标准温度计和温控系统显示的温度(℃)标准温度计 温控系统 差值比较 标度误差 温控系统的静态误差 通过测量在不同的温度点同标准温度的温度差来确定温控系统的静态误差。其测量 数据如下表 3: 表 3 标准温度和温控系统显示的温度 标准温度和温控系统显示的温度(℃)标准温度 系统显示值 差值 0 静态误差 ℃ 温控系统的控制精度 通过设定不同的温度值,使加热器加热,待温度稳定时记录各温度点的温度计数据 和温控系统的显示值。其记录数据如下表 4: 温度计读数和温控系统显示的温度(℃)设定温度值 系统显示值 差值 控制精度 ℃超调量 、结果分析论述 我们的系统完全满足设计要求,静态误差方面可以达到 ℃的误差,在读数正确 方面与标准温度计的读数误差为 %,对一般的工业生产完全可以采用我们的设计。 该系统具有较小的超调值,超调值大约为 左右。虽然超调为不利结果,但另一方面却减小了系统的调节时间。从其数据表可以看出该系统为稳定系统。 3、设计方案评价 优点 在硬件方面:本设计方案采用了单总线型数字式的温度传感器,提高了温度的采集 精度,节约了单片机的口线资源。方案还使用仅一跟口线就可控制的美国生产的固态继电器 SSR—40DA 作加热控制器件,使设计简单化,且可靠性强。在控制精度方面,本设计在不能确定执行机构的数学模型的情况下,大胆的假设小心的求证,利用模糊控制的算法来提高控制精度。在软件方面:我们采用模块化编程,思路清晰,使程序简洁、可移植性强。 缺点 本设计方案虽然采用了当前市场最先进的电子器件,使电路设计简单,但设计方案造价高。本系统虽然具有较小的超调量,但加大了调节时间。如果需要更高的控制精度,则我们的模糊控制将不适应,需修改程序。 11 方案的改进 在不改变加热器容量的情况下,为减小调节时间,可以实行在加热快达到设定温度时开启风扇来减小热惯性对温度的影响的措施。在控制精度上可采用先进的数字 PID控制算法,对加热时间进行控制,提高控制精度。 可以改进控制系统使能同 PC 联机通信,以利用 PC 的图形处理功能打印显示温度曲线。AT89S52 串行口为 TTL 电平,PC 串行口为 RS232 电平,使用一片 MAX232 作为电平转换驱动。 参考 文献 [1] 李广弟 单片机基础 北京:北京航空航天大学出版社,2001 [2] 王福瑞 单片微机测控系统设计大全 北京:北京航空航天大学出版社,1997 [3] 赵茂泰 智能仪器原理及应用(第 2 版) 北京:电子工业出版社,2004 [4] 赖寿涛 微型计算机控制技术 北京:机械工业出版社,2000[5] 沙占友 模拟与数字万用表检测及应用技术 北京:电子工业出版社 1999 12附 录 附录[1]使用说明书 按 键功能说明 数字键:按 SET 键后,按相应的数字键(0~9)可对温度进行设置,所设置的温 度将实时显示在 LED 显示器上; SET 键:按 SET 键可对温度的十位、个位以及小数部分进行设置; YES 键:设置好温度后按 YES 键,系统将据你所设置的温度(须大于当前实际 温度)对水进行加热; NO 键:若误按了 SET 键,或对输入有误,可按 NO 键进行取消; RST 键:对系统进行复位。 指示 灯及报警器说明 红 灯:加热状态标志; 绿 灯:温度传感器正常工作标志; 蓝 灯:保温状态标志; 报警器:功能①当水温达到预设值时报警提醒; 功能②当水温达到或超越上、下限时报警提示。 13附录[2]设计总电路 14附录[3]程序清单 TEMPER_L EQU 29H ;用于 保存读出温度的低 8 位 TEMPER_H EQU 28H ;用于 保存读出温度的高 8 位 FLAG EQU 38H ;是否 检测到 DS 18B20 标志位 DAYU EQU 44H ;设温 >实温 XIYU EQU 45H ;设温 <实温 DEYU EQU 46H ;设温 =实温 GAOLE EQU 47H ;水温 高于最高温度 DILE EQU 48H ;水温 低于最低温度 A_bit EQU 79h ;数码 管个位数存放内存位置 B_bit EQU 7Ah ;数码 管十位数存放内存位置 C_BIT EQU 78H ;数码 管小数存放内存位置 ORG 0000H AJMP START ORG 0003H AJMP PITO ORG 0030H START: CLR CLR CLR SETB MOV R4, #00H MOV SP, #60H ;确立堆栈区 MOV PSW, #00H ; MOV R0, #20H ;RAM 区首地址 MOV R7, #60H ;RAM 区单元个数 ML: MOV @R0, #00H INC R0 DJNZ R7, ML CLR IT0 MAIN:LCALL GET_TEMPER ;调用读温度子程序 进行温度显示,这里我们考 ;虑用网站提供的两位数码管来显示温度 ;显示范围 00 到 99 度,显示精度为 1 度 ;因为 12 位转化时每一位的精度为 度,;我们不要求显示小数所以可以抛弃 29H 的低 4 ;位将 28H 中的低 4 位移入 29H 中的高 4 位,这 ;样获得一个新字节,这个字节就是实际测量获 ;得的温度 LCALL DISPLAY ;调用数码管显示 子程序 JNB 00H, MAIN CLR 00H 15MOV A, 38H CJNE A, #00H, SS AJMP MAIN SS: LCALL GET_TEMPER LCALL DISPLAY;调用 数码管显示子程序 LCALL BIJIAO LCALL XIAOYU LCALL JIXIAN JNB DEYU ,LOOP CLR ;关加热器 SETB ;关 蓝灯 SETB ;关风扇 CLR DEYU LCALL GET_TEMPER LCALL DISPLAY AJMP TT2 LOOP:JNB DAYU ,TT CLR DAYU SETB SETB SETB CLR LCALL GET_TEMPER LCALL DISPLAY AJMP TT2 TT:JNB XIYU, TT2 CLR XIYU CLR CLR CLR CLR LCALL GET_TEMPER LCALL DISPLAY TT2:MOV A, 29H CLR C CJNE A, 50H, JX MOV A , 30H CLR C CJNE A, 51H, JIA1 AJMP YS2 JIA1:JC JX MOV A, 51H MOV 52H, A ADD A, #2 16MOV 52H, A CLR C MOV A, 30H CJNE A, 52H, JIA2 JIA2:JNC JXYS2:SETB CLR MOV R5, #20H YS:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS CLR SETB MOV R5, #20H YS1:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS1 YS3:SETB CLR MOV R5, #20H YS0:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS0 CLR SETB MOV R5, #20H YS01:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS01 YS4:SETB CLR MOV R5, #20H YS02:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS02 CLR SETB MOV R5, #20H YS03:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS03 JX: MOV A, 29H CJNE A, 31H, JX00 JX01:SETB 17CLR C AJMP LAST JX00:JC JX01 CLR CJNE A, JX02:SETB CLR C AJMP LAST JX03:JNC JX02 32H, JX03 CLR GET_TEMPER LCALL DISPLAY AJMP SS ;***************************常数表格区**** ****************************************** TAB:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8 H,80H ;0-8 DB 90H,88H,83H,0C6H,0A1H,86H,8EH,0FFH ,0CH ;9,A,B,C,D,E,F,灭,p. TAB1:DB40H,79H,24H,30H,19H,12H,02H,78H,00H ,10H, ;. TAB2:DB 0, 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 9, ;小数点 ;*************************1ms 延时程序*************** ********************* ;************************* ****中断服务程序* ********************************* ; 完成按键识别,键值求取,按键实时显示 等功能; ;************************* **************** ********************************** PITO: PUSH ACC PUSH PSW SETB RS0 CLR RS1 SET B 00H MAIN1: MOV R7 , #03H ;显示位数为 2 位 MOV R0, #7AH MOV 78H, #00H MOV 79H, #00H MOV 7AH, #00H KK: LCALL DIR LCALL KEY1 LOOP1:CJNE A, #11, LOOP2 AJMP LAST0 LOOP2:CJNE A, #12, LOOP3 LJMP LAST3 LOOP3: CJNE A, #10, L4 MOV A, #00H L4: MOV @R0, A LCALL DIR DEC R0 DJNZ R7, KK 18SETB 01H LAST0:JNB 01H, KK LOOP4:LCALL KEY1 CJNE A, #12, LOOP5 AJMP LAST3 LOOP5:CJNE A, #11, LOOP4 LAST1:LCALL DIR LCALL MUN LCALL JD LCALL BIJIAO LAST3:POP PSW POP ACC RETI ;******************精度控制 子程序********** ****** JD: PUSH ACC PUSH PSW CLR C MOV A, 38H MOV 50H, A MOV A, 39H MOV 51H, A CJNE A, 29H, L001 L001:JC LAST02 ;设温<实温,则跳出 MOV A, 29H MOV 41H, A MOV A, 38H CJNE A, #25, L002 L003:CLR C ;0
185 浏览 4 回答
244 浏览 6 回答
135 浏览 3 回答
255 浏览 4 回答
242 浏览 4 回答
126 浏览 2 回答
311 浏览 5 回答
320 浏览 3 回答
274 浏览 3 回答
318 浏览 4 回答
94 浏览 3 回答
199 浏览 6 回答
224 浏览 1 回答
288 浏览 3 回答
304 浏览 4 回答