自从2015年人类第一次观测到引力波,引力波物理已然成为目前最为火热的研究方向之一。作为了解宇宙的新窗口,引力波正逐步为我们展现一幅千百年来人们都不曾见过的宇宙画卷,其中的物理现象为我们将来的物理学发展指明了一些方向。
引力波与新物理
传统的物理实验研究往往受到我们赖以生存的环境的很大限制,例如对撞机实验和天体物理电磁信号的观测。就目前而言,粒子对撞机是探测极小尺度新物理最有效的手段,而对撞能标是衡量对撞机探测性能的重要指标——越高的能标能够帮助我们探测越小的尺度,了解更基本的物理规律。但是在现有的生产条件下,对撞机的能标提升已经愈发艰难。虽然在未来二十年,粒子对撞机的能标有希望达到100TeV附近,但是在目前最高的14TeV对撞能标的粒子物理实验中,我们还未发现确切的新物理信号。另外,传统的天文观测几乎都基于电磁波信号,在过去近百年的技术革命下,电磁波天文学已经取得了丰硕的成果。但是时至今日,电磁波段观测深度的限制和前景的干扰( “前景”指视线方向与被观测源相近,但距观测者较近的天体)仍是我们了解更大的宇宙空间和更久远的宇宙 历史 的坚固障碍。
图1:对撞机的尺度与能标示意图
过去一百多年以来,激光干涉技术的发展大大提高了我们对于极其微小的长度变化的测量能力。这一技术的跨越式发展使得我们探测引力波成为了可能。目前,全球的主要经济体都已启动或正在布置自己的引力波观测项目,引力波天文学已经成为天文学和物理学中新的沃土,将会带给我们对于宇宙和物理学全新的理解。
相对于电磁波而言,引力波观测的优势主要有两方面:一是引力波信号一般很难被前景干扰,所以背景本底的信号可以被探测到;再者,由于引力波在传播过程中与普通物质的相互作用非常微弱,所以诞生在宇宙早期的引力波信号能够一直较为纯净地保留至现在,成为一种宇宙的“ 历史 遗迹”等待着科学家的观测。 引力波观测与传统的对撞机实验和电磁波段的天文观测的结合,将会极大的拓展我们对宇宙和基本物理规律的认知。
爱因斯坦的引力理论诞生一百多年以来,人们对于黑洞的研究取得了很多重大的突破,但是时至今日我们对于这类宇宙中最为极端的天体仍然知之甚少。大家相信,完整地描述黑洞的物理需要引力理论和量子理论相结合,但是目前这两个在各自领域取得了极大辉煌的理论在结合时遇到了各种各样的困难。黑洞视界的附近作为引力理论和量子理论的冲突现场,或许能够带我们一窥量子引力理论的真容,极大拓展我们对基础理论的认知。
另外,宇宙极早期的各种物理过程会诱发时空的随机扰动,产生随机引力波背景,若目前的引力波观测能够发现一些随机引力波背景的特征,那么也将暗示着宇宙早期有些不寻常的过程发生。最后这一点便是最近一项研究的出发点,该研究由中国科学技术大学的蔡一夫教授和波兰雅盖隆大学(Jagiellonian University)的林春山教授共同领导,博士后王博博士和博士生鄢盛丰参与,相关论文已于日前发表在国际著名期刊Physical Review Letters上。下面将对这项工作进行简要介绍[1]。
荡秋千的启发
在平时玩荡秋千时,大家应该已经有所发现:在没有人推动的情况下,想要秋千越荡越高,那么我们需要规律地前后摇摆身体,用自身重心的摆动来驱动秋千的振荡,这便是一种特殊的共振现象,叫做参数共振。
图2:荡秋千示意图
参数共振现象在物理学的各个领域有着广泛的应用。在宇宙学领域,大家相信在宇宙演化的一个时期,参数共振现象很有可能起着决定性的作用。在暴胀学说中,由于暴胀过程极具“稀释”效应,这一过程结束时导致了整个宇宙内一片死寂,仅剩下驱动暴胀后标量场遗留的能量或者是一些其它轻的标量场。这时候需要参数共振将驱动暴涨的场的能量转化为各种后期宇宙演化所需要的物质成分,将整个宇宙重新加热。这些大量产生的物质成分,不仅包括光子、电子、质子等粒子物理模型所能描述并被观测得到的粒子,还包括了原初时期就产生的暗物质和暗能量。这一过程被称为宇宙的预加热,接下来宇宙进入到标准热 历史 演化之中。
SSR机制最早用于研究原初黑洞的形成和预言其丰度。原初黑洞是一种特殊的黑洞,它们是宇宙在极早期由于局域空间曲率的不均匀性导致了原初物质密度扰动坍塌而形成的黑洞,它们的形成机制有别于通常情况下恒星坍缩形成的黑洞。早在上世纪六七十年代,苏联物理学家雅科夫·泽尔多维奇(Yakov Zel'dovich)和英国物理学家斯蒂芬·霍金(Stephen Hawking)分别指出了这种极早期宇宙中黑洞形成的理论可能性[5][6],并在后来的宇宙学研究中被广泛探讨。由于原初黑洞的形成和其自身特点,它们成为了一种重要的冷暗物质候选者,并且也可能是重要的引力透镜天体和引力波源的候选者。SSR机制所预言的原初黑洞主要分布在一些特殊的质量附近,且分布密度很高,可以与暗物质能量密度相比拟(即绝大部分暗物质为原初黑洞)。
在此基础上,蔡一夫教授团队发现,由于SSR机制极大地放大了原初标量扰动的振幅,在二阶扰动层面,通过标量与张量非线性的耦合,SSR还可以分别在暴胀期间和暴胀后的辐射为主时期诱导产生随机引力波背景,并且可能在将来被引力波探测器探测到[7]。此外,SSR的模型实现与应用也是一个值得深入研究的内容,目前有在暴涨子-曲率子图像下的应用[8],DBI暴涨下SSR的实现[9],以及在特殊的双场模型中有类似的共振放大应用[4]。
引力波的SSR
在5年多以来对引力波的观测中,最令科学家们激动的引力波事件莫过于观测到了双中子星并合的引力波(GW170817),并且同时观测到了对应的多波段的电磁信号。这样一个标准汽笛事件的发现,可以同时让我们知道引力波源的红移和距离信息,为宇宙膨胀速度的测量开辟了一个新窗口。更重要的是,通过比对接收到电磁信号和引力波信号的时间,我们还可以对引力波传播速度进行限制。目前通过这一事件,我们认为引力波传播速度和光速之间的差异在10-15量级的精度以内。
但是,这个速度限制是来自比较近邻的宇宙的观测数据(一般红移小于1),而目前的观测证据对于远处或者说更早期的宇宙中引力波的传播速度,并没有很好的限制,而在这种时期,如果引力波传播速度有较大的非平凡特性(即偏离了爱因斯坦广义相对论预测的光速),那么可能预示着早期宇宙中有超越标准理论的新物理在发生作用。
在超出爱因斯坦广义相对论的修改引力理论中,有一些理论诸如Horndeski理论、4维Einstein-Gauss-Bonnet理论,它们的标量自由度和张量自由度有一定程度上的耦合,如果在早期宇宙中这些理论的效应相对明显,那么将对早期宇宙中的引力波传播速度产生影响。其中一种可能的情况便是,在极早期的预加热阶段,由于那时标量自由度具有周期性振荡行为,标量场通过与张量场之间的耦合使得张量自由度的声速大小具有周期振荡行为(即引力波的传播速度大小有振荡行为),并且这个振荡的特征会随着宇宙膨胀而被抹平,那么引力波传播速度在相对近邻的宇宙中会回归到光速。
由于引力波传播速度在极早期具有的振荡行为,引力波便也会产生参数共振现象,这便是引力波的SSR。它使得引力波振幅得到指数级放大,在极短时间内放大4-5个量级,然后共振会很快结束并使引力波背景回归到正常的演化中。这类SSR都属于参数共振中的窄共振类型,发生共振的频段是在特征频率附近很窄的一个频段内,以及特征频率整数倍的频率处,但是一般只有特征频率处占主导。此时,背景引力波的振幅在特征频率附近会产生一个峰值,这样一个峰值特征会随着宇宙演化保留至今,从而被现有的引力波探测器和未来的引力波探测实验观测到。 这个预言的意义在于,如果我们能在未来探测到这个背景引力波谱特征,那么可以推断在极早期宇宙中引力波的传播速度会有明显偏离光速的特点,也就是说那时的引力理论很可能不再由爱因斯坦广义相对论描述。这是存在新物理的证据。
图3:引力波的声速共振机制示意图
另外,在这项研究中,研究人员还发现由于引力波在线性理论下被剧烈放大,还有可能引发相对明显的高阶非线性效应。共振放大和非线性效应若被同时观测到,那么将大大增加该机制存在的可能性。这些非线性效应还有可能解释目前被NANOGrav实验观测到的疑似背景引力波信号,而该研究还在进行当中。
于粒子物理而言,这一项工作也有重要的意义:引力波共振放大发生的能标在TeV能标之上,基本上高于现有的粒子对撞机实验能标。也就是说,该现象若被发现也可能预示着早期存在一些超越粒子物理标准模型的新物理,例如通过修改引力理论中标量场与希格斯场的耦合与一些散射,使得标量场影响引力子的行为,从而改变引力波传播速度。这些预言都等待着未来观测水平的提高来加以佐证。
参考文献:
[1] . Cai, C. Lin, B. Wang, . Yan, “Sound speed resonance of the stochastic gravitational wave background”, Phys. Rev. Lett. 126 (2021) 071303 .
[2] . Cai, X. Tong, . Wang, . Yan, “Primordial Black Holes from Sound Speed Resonance during Inflation”, Phys. Rev. Lett. 121, , 081306 (2018).
[3] B. Carr, F. Kuhnel, “Primordial Black Holes as Dark Matter: Recent Developments”, Ann. Rev. Nucl. Part. Sci. 70, 355-394 (2020).
[4] Z. Zhou, J. Jiang, . Cai, M. Sasaki, S. Pi, “Primordial black holes and gravitational waves from resonant amplification during inflation”, Phys. Rev. D 102, , 103527 (2020).
[5] Ya. B. Zel’dovich, I. D. Novikov, Sov. Astron. 10 (1967), 602.
[6] S. Hawking, “Gravitationally collapsed objects of very low mass”, Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
[7] . Cai, C. Chen, X. Tong, . Wang, . Yan, “When Primordial Black Holes from Sound Speed Resonance Meet a Stochastic Background of Gravitational Waves”, Phys. Rev. D 100, , 043518 (2019).
[8] C. Chen, . Cai, “Primordial black holes from sound speed resonance in the inflaton-curvaton mixed scenario”, JCAP 10, 068 (2019).
[9] C. Chen, . Ma, . Cai, “Dirac-Born-Infeld realization of sound speed resonance mechanism for primordial black holes”, Phys. Rev. D 102, , 063526 (2020).
墨子沙龙是以中国先贤“墨子”命名的大型公益性科普论坛,由中国科学技术大学上海研究院主办,中国科大新创校友基金会、中国科学技术大学教育基金会、浦东新区科学技术协会、中国科学技术协会及浦东新区 科技 和经济委员会等协办。
墨子是我国古代著名的思想家、科学家,其思想和成就是我国早期科学萌芽的体现,“墨子沙龙”的建立,旨在传承、发扬科学传统,建设崇尚科学的 社会 氛围,提升公民科学素养,倡导、弘扬科学精神。科普对象为热爱科学、有 探索 精神和好奇心的普通公众,我们希望能让具有中学同等学力及以上的公众了解、欣赏到当下全球最尖端的科学进展、科学思想。
关于“墨子沙龙”