空间天文的发展大致经历了三个阶段。最初阶段致力于探明地球的辐射环境和地球外层空间的静态结构。这个时期的主要工作是发展空间科学工程技术。第二阶段开始探索太阳、行星和星际空间。第三阶段是从二十世纪七十年代起,开始探索银河辐射源,并向河外源过渡。六十年代初以来,在太阳系探索和红外、紫外、X射线、γ射线天文方面,都取得十分重大的成就。近地空间、行星、行星际空间探测 空间探测首先在近地空间、行星际空间方面取得重大突破。发现日冕稳定地向外膨胀,电离气体连续地从太阳向外流出,形成所谓太阳风。这些成就改变了原来的日地空间的概念。行星际空间探测清楚地揭示了行星际磁场的图像,天体物理学家由此而得到启示去寻找它与太阳本身的关系,并且产生研究太阳光球背景场的兴趣。这种研究获得了一种崭新的概念,从大尺度光球背景场的特性来看,这种概念与古典的巴布科克的恒星磁场理论相矛盾。这是近年来对太阳物理学的最大的挑战。行星际空间是一个天然的等离子体实验室,它提供了地面实验室条件下无法比拟的规模和尺度。太阳风作为无碰撞的等离子体,通过对行星际空间中丰富的动力学现象的观测而得到最充分的研究。行星、月球的探测主要是依靠对行星、月球作接近飞行或在上面登陆的行星探测器来进行的。很自然,最先得到探索的行星是地球。1958年范爱伦设计了地球“探险者”1号,并在1959年通过这个卫星的测量发现了范爱伦辐射带(见地球辐射带),对这一问题的继续研究又揭示了地球周围存在着一个复杂的巨大磁层(见地球磁层),这是空间探索在行星科学方面的首次重大进展。接着开始对月球和其他行星的一系列探测,在这一阶段得到很多有意义的资料,动摇了地面天文研究的许多结论。发现月球没有辐射带,也没有磁场。月面存在重力异常,月球腰部有隆起。根据放射性元素衰变的测定,月球壳层的年龄约为46亿年。金星覆盖着浓厚的大气,主要成分是二氧化碳。上层大气的云层厚度达25公里。金星的表面温度为465~485℃,表面压力约90大气压。木星则存在着惊人的强磁场,它的磁层活动强烈。行星际空间的部分高能粒子来自木星。火星的大气非常稀薄,主要成分是二氧化碳。火星上没有发现运河。火星极冠主要是由干冰而不是冰雪组成。行星际探测器“海盗”1号和2号的初步探测表明,火星根本不存在高级生物,在着陆处附近也未发现。 人造卫星发射成功以来,紫外天文探测有了新的飞跃。由于使用了装载在轨道太阳观测台卫星上的扫描式紫外分光光谱仪,获得空前丰富的紫外发射线光谱资料。这些资料具有极高的空间分辨率,对色球-日冕过渡层的物态研究颇有价值,从而为建立更精细的过渡层理论模型提供了实验依据。恒星紫外辐射研究的主要课题是一些有关恒星大气模型的问题。空间观测表明,早型星在紫外波段有强烈的紫外连续谱和共振线。这种辐射与恒星大气的模型的关系十分密切,因而可以用来研究恒星大气。晚型星的紫外辐射类似太阳,主要来自色球和星冕。最近的一些观测证实,有些晚型星存在明显的色球层或外围高温气体。这反映色球、日冕结构可能普遍存在于恒星中。紫外探测对星际物质的研究有特殊用处,因为星际物质包含有尘埃,它对不同波长的电磁辐射消光不同,这是研究星际尘埃本身的主要依据。根据大量空间观测得到的紫外波段消光的特点,人们得知星际尘埃包含有线度约为 10-6厘米的石墨尘粒。星系的紫外探测也已开始。观测证实星系存在强烈紫外辐射,并且显示出较大的紫外色余,这也许是星系中存在大量热星的表现。 六十年代初期开始的大量X射线探测,已经给我们展示了一幅与光学天文截然不同的宇宙图像。太阳X射线天文的主要贡献是弄清了太阳X辐射中的三个成分──宁静、缓变和突变成分。宁静成分的 X辐射起源于太阳色球外层和日冕区的热辐射,具有连续辐射和线辐射。缓变成分与活动区上空的日冕凝聚区有关。突变成分则和耀斑爆发或其他日面偶发性活动成协。人们常称为X射线爆发。对X射线爆发的观测和研究已经充分揭示了太阳耀斑的非热特征。它与射电微波爆发结合在一起,对建立耀斑的爆发阶段模型,以及建立耀斑区粒子加速过程模型提供了重要根据。此外,X射线冕洞的发现也是一个相当重要的事件。钱德拉X射线望远镜观测到的X射线1962年6月第一次发现来自天蝎座方向的强X射线辐射以后,在不到二十年的时间内,非太阳X射线天文也蓬勃发展起来。和其他领域相比,它的实验方法比较成熟,在空间天文中发展最快,成就最为突出。如今已发现一千多个X射线源,其中一部分已得到光学证认,它们和强射电星系、塞佛特星系、超新星遗迹有关。超新星遗迹发射稳定的X辐射引起这样一个问题:在磁场中产生同步加速辐射的高能电子从何处得到能量补偿?射电脉冲星的发现很自然地促使人们去寻找X射线脉冲星。1969年首先发现蟹状星云脉冲星NP0532的脉冲X辐射,它和对应的光学脉冲几乎有完全相同的周期。以后又发现半人马座X-3、武仙座X-1等都是著名的另一类X射线脉冲星,它们的发现对双星演化过程有非常重要的意义。非太阳X射线探测的另一个成果是,发现了几乎是各向同性的宇宙X射线背景辐射,这对天体演化的研究有重要意义。1974年以后,随着大面积探测器的出现,终于又发现了一批暂现X射线源和宇宙X射线爆发。后者具有重现性特征,极大流量达10-8~10-7尔格/(厘米2·秒),估计总功率在1038~1039尔格/秒以上,如今还没有一种理论能作出合适的说明。1977年高能天文台-A(HEAO-A)的发射,使X射线天文的视野扩展到河外天体。它已经成功地得到可能的黑洞圆规座X-1的数据。还发现星系际可能存在着热气体,它的总质量可能超过星系内恒星总质量。这意味着高能天文台-A发现了宇宙的主要成分。 过去十年,非太阳的γ 射线探测进展较快,其成就有:①证实各向同性的γ 射线弥漫背景辐射的存在。发现在数兆电子伏能区附近,光子谱存在着某种隆起,这可能与原始宇宙线粒子能谱在1015电子伏附近变陡有关。②对银道面高能γ 射线流以及它们沿银径方向的分布进行精细探测的结果,支持宇宙线起源于超新星的假设。③来自银河中心区域的γ 辐射谱中找到了若干条γ 发射线,这对研究银河中心区域的核过程提供了重要线索。④从一些射电脉冲星中记录到脉冲γ 射线流,其脉冲周期几乎与射电脉冲周期相同,而蟹状星云脉冲星可能存在着1011~1012电子伏的超高能γ 光子发射。1973年“维拉”卫星偶然探测到辐射能流可与太阳耀斑爆发相比的宇宙X射线爆发。这也许是七十年代天文学最重大的发现之一,当时轰动了高能天体物理学界。这种宇宙γ 射线爆发具有极短的光变时标、高达1040尔格的巨大能量和快速的能量释放,它迄今仍然是天体物理中最迷人的问题之一。