![](/lib_static/assets/images/user_logo/3e4fa481dc066f0e7c01c5b6e9b5e16875157b95.jpg)
数学文化 人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。 早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展了几千年,表现出了强大的生命力。数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。(2)数学对人的文化素养影响面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世界。有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。二,数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。三,数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材四,数学韵味——数学的美说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……数学美可以分为形式美和内在美。数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。
大学数学文化教学研究优秀论文
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。下面是我整理的大学数学文化教学研究优秀论文,欢迎大家分享。
大学数学文化教学研究论文
大学数学是由高等数学、线性代数、概率论与数理统计等课程所组成的基础学科。传统意义下的大学数学教学是传授数学知识和技能,培养学生用数学方法和思维分析问题、解决问题。但普遍而言,很多学生对于一些知识点,不知道怎么学、为什么学以及学了如何用。教师的教学方法始终以灌输式为主,缺乏以问题为导向的教学实践,等等。因此,如何激发学生学习数学的兴趣,是大学数学教学的一个重点和难点。而数学文化对于大学数学教学来说是一种十分有效、不可或缺的工具。本文研究的正是解决这一问题的方法之一———数学文化。认识到其在大学数学教学中的重要作用,并将数学文化与大学数学教学合理结合,不但能有效地激发学生学习数学的兴趣,增强大学生的学术专业水平,更能够提升大学生的数学文化素质。数学文化的内涵不仅表现在知识本身,还寓于它的历史。通过对数学文化的学习,不仅可以激发学生的学习兴趣,也有利于学生对数学概念、数学方法和数学原理的理解与认识的深化。在此过程中,可以使学生在接受数学专业训练的同时,获得人文科学方面的修养,提高学生的人文素质。数学文化中的数学史可以引导学生学习数学家的优秀品质,坚持真理,不畏强权,努力追求,使学生正确认识学习过程中遇到的困难,树立学习数学的兴趣和信心;数学文化中蕴含的美可以培养学生的美学修养,感受数学的简洁美、统一美,形成对数学良好的情感体验,提高学生的数学素养和审美素质。
一、数学文化教育渗透于大学数学教学中的重要性
1.有利于活跃课堂气氛,激发学生的学习兴趣。学生跨入大学校门,不适应高等数学的思想方法。这就要求高校数学教师在传授知识的同时,培养他们的兴趣。如果用历史回顾和名家轶事来点缀教学一定会使学生远离数学的抽象、复杂,再适时地将数学的概念与方法贯穿其中,能够将内容由抽象变具体,使枯燥的数学教学变得生动活泼,从而使学生热爱数学,激发其学习的兴趣。
2.有助于体会数学本身的美著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,数学中处处充满着简洁美、奇异的美、对称的美、抽象的美。比如对称美:12×12=144,21×21=441;13×13=169,31×31=961;102×102=10404,201×201=40401。再比如,0.618…它被中世纪学者、艺术家达芬奇誉为“黄金数”,他也被德国天文学家、物理学家、数学家开普勒赞为几何学中的两大“瑰宝”之一(另一个为“勾股定理”)。事实上,无论是古埃及的金字塔,还是古雅典的巴特农神庙以及今日的巴黎的埃菲尔铁塔,这些世人瞩目的建筑中都蕴涵着0.618…这一黄金比值(它显然展示着数学美感)。而数学中更为一般的对称,则体现在函数图像的对称性和几何图形上。前者是运用在建筑、美术领域后给人以无穷的美感,后者则为我们探求函数的性质提供了方便。爱因斯坦说过:“这个世界可以由音乐的音符组成,也可以由数学的公式组成”。数学文化则是数学美的主要表现形式。数学是无国界的,大部分学生对于数学的公式和符号心生畏惧,但这些数学公式和符号的实质是一种数学语言的表现,如同音乐的韵律一般。数学是一种理性的美,音乐是感性的美。在教学过程中,介绍数学中的美学,将增加数学本身的魅力,提高学生的学习兴趣,从而使学生真正的喜欢上数学,最终提高教学效率,提升大学生自身的数学素养。
3.有助于数学知识的掌握数学教学中充满了对公式的推理和应用,教学过程重视严密性、逻辑性和系统性。因此,需要培养学生的逻辑思维能力,而这种能力的培养要求给学生传授专业的数学知识,并且加以练习。但是,在课程教学过程中,部分教师很少讲数学精神以及数学思想等一系列数学文化给学生听,甚至一些数学专业的大学生都对数学学科发展史以及一些著名数学家这一系列的数学文化内容知晓甚少。笔者认为,许多数学知识体系的'建立都是通过不断进步最终形成的较为完善的体系。可很多学生只知其然,不知其所以然的模式导致只是为学习而学习,却不知道这些公式的原理。故了解知识背后的数学文化,能够使学生避免成为填鸭教学的受体,真正地成为数学魅力的感受者和学习者。
二、如何将数学文化渗透于大学数学教学中
大学数学教学的主要任务是让学生掌握数学的概念、思想和方法,在课堂教学中,要有目的地再现数学历史情景。如讲导数概念时可讲授微积分的创立过程,要用问题式、启发式和发现式等方式使学生有意识地分析数学家们原来的创造思维活动脉络,体会数学思想的整体连贯性,不能简单的回顾历史。这样才会全面深刻地理解极限概念,从而对以后用极限作为基础的微积分学、级数论等会更容易接受,大学数学也就变得具体、简单了。具体地,
1.高校教师加强对数学文化的认识如果一个大学数学老师在课堂上只侧重于理论的证明、推导,数学的概念,定理证明的过程,而不是概念的由来,也不是发现定理的过程,这对于学生对知识的全面掌握和理解是十分不利的。因此大学数学教师应该转变数学教育观念,把数学教学看成一种文化系统,利用数学文化的教育来启蒙学生的思想,让学生了解数学知识和方法背后的数学文化价值。比如,高等数学中微积分的教学,应该介绍微积分产生的发展史和思想史,而后是讲授概念、定理及相关方法,最后是介绍其具体的应用价值。
2.运用多媒体技术辅助数学文化教学多媒体通常是指录像带与录像机、幻灯片与幻灯机、投影片与投影机、光盘与VCD、CAI课件与计算机,等等。“课件”是通过计算机将文本、图形、声音、图像、动画、视频等多种媒体进行综合处理制作而成的、用于课堂教学的软件。多媒体是现代化教育技术的重要组成部分,它可以丰富和优化传统教学方法。借助现代教学手段,数学文化可以更好地与教学过程相结合,提高资源的利用率,使大学数学教学活动焕发青春、充满活力。比如,在介绍定积分概念时,我们可以溯源到牛顿的“分析学”,计算任意曲线下图形的面积。此时,可以利用多媒体课件制作动态的图形分割,而后近似求曲边梯形的面积,利用数学软件再现此过程无疑是生动形象的,很有利于学生从直观上理解这种基于积分思想的求面积的方法,同时使学生感受到了纯数学与现代科技相结合的巨大魅力。
三、结语
在大学数学教学过程中突出数学的文化功能,可以提高数学教学的效率,扩展学生的视野,加深学生对数学知识的理解,使学生在学习数学知识与思想方法的同时,进一步了解数学、喜欢数学、爱上数学,最终达到事半功倍的效果。
自主构建知识初中数学教学研究论文
【摘要】
随着我国教育事业的进一步发展,教育部门对课堂教学质量提出了进一步要求,对于课堂主体与课堂教学目标等,也做出了明确规定。结合实际情况,对以学生自主构建知识为核心初中数学教学顺利进行的有效途径进行分析,以期为今后的各项工作提供宝贵经验。
【关键词】
自主构建知识;数学教学;提问
初中数学学科具有一定的抽象性与难度,若是学生缺乏对相关知识的正确理解,将会直接影响到数学学习质量。因此,初中数学教师需要在尊重学生主体地位的前提下,鼓励学生自主构建知识,使得学生在这一过程中可以深入了解数学知识,为培养其自主学习能力、良好的思维模式奠定有利基础。
一、鼓励学生提问
问题是促使学生进行思考的根本动力与源头,只有在发现问题以后,学生才会从心里引起重视,并充分开动脑筋进行思考,有助于培养学生良好的思维能力与自主学习能力。这就需要初中数学教师在进行课堂教学的过程中,加强对学生的引导,引导学生及时发现各种问题,对此教师可以通过启发诱导、设置疑问、类比分析等方式来展示问题,使得学生可以在教师正确的引导下,对问题进行思考。值得注意的是,教师在这一过程中还需要充分激发学生的学习兴趣,虽然问题设置可以在一定程度上引起学生的好奇心,但是若是学生缺乏足够的兴趣,将会影响到学生思考效果。因此,初中数学教师可以通过为学生创设情境的方式,来吸引学生,刺激学生思维,从而达到引导学生思考数学问题的目的。与此同时,为了使学生在今后的数学学习过程中,提高自主学习能力,教师还需要针对学生的问题意识进行培养,让学生将学习、阅读、课堂中的无法理解的内容以问题的形式提问,以培养其问题意识,而教师则是可以让学生通过小组合作探讨的方式,让学生对问题进行思考与探索,加强学生之间的交流与沟通,为进一步提高其自主学习能力奠定有利基础。
二、鼓励学生自主发现问题并进行探索得出结论
新时期,传统教学模式已经无法满足现下教育部门对于初中课堂教学的要求,同时要求教师必须尊重学生的主体地位,且要以培养学生的个人能力、开发学生思维为目标而开展各项工作,这就需要初中数学教师及时改变教学方式、教学模式等,以适应当前教育需求。为了帮助学生实现自主构建知识,教师在实际教学的过程中,需要充分发挥自身引导作用,鼓励学生勇于提问、发现问题,并充分利用自身所掌握的数学知识对问题进行自主探索,使得学生可以通过自己思考,来学习相关知识,并深化对于数学知识的理解。例如,教师在为学生讲授《点、线、面之间的位置关系》这一部分内容时,可以通过话语对学生进行引导:“在我们生活中,点、线、面是非常常见,那么在你们的生活中会遇到哪些与点、线、面相关的事物呢?”由此来引起学生的思考,在学生指出这些存在于生活中的点、线、面时,教师又可以引导学生对这些事物的特点进行概括,从而总结出有关点、线、面位置关系的相关性质,让其在思考与探索中得出结论,培养其思维能力与自主学习能力,从而实现自主构建知识。
三、引导学生得出结论后进行反思,实现自主构建知识
在学生通过思考与自主探索得出结论以后,并不意味着教学环节就此结束,教师还需要结合学生的实际情况、思维情况等方面,引导学生进行反思,做到学与思之间的相互结合。通过引导学生进行反思,有助于进一步加强学生对相关数学知识的理解,而学生也可以对自己从提问、思考、探索、得出结论的整个过程进行思考,以便于学生及时发现自身问题。为了使学生今后的努力方向更加明确,初中数学教师应根据实际情况,对学生进行全面、综合性的评价,在肯定其思想上闪光点的同时,指出学生在思考、探索过程中存在的偏差,促使学生在今后思考的过程中加以改正,对于培养学生良好的思维能力、自主学习能力等方面具有重要意义。此外,通过对整个过程进行反思,还可以帮助学生发现知识之间的内在联系,从而为其构建完成的知识脉络奠定有利基础。
四、结束语
综上所述,在时代发展的过程中,传统教学模式无法适应当前国家教育部门对于学生各方面的要求,且教学手段的滞后性也会在一定程度上限制人才培养有效性的进一步提升,而中学作为培养学生思维能力、自主学习能力的重要阶段,对于学生今后学习与发展具有重要影响。这就需要初中数学教师充分利用课堂教学时间,引导并帮助学生实现知识的自主构建,深化学生对于各项数学知识理解,并在知识之间建立起联系,从而有效提高课堂教学质量。
参考文献:
[1]马贤.初中数学自主学习能力的培养[J].学周刊,2017,(28):99.
[2]党晓红,徐大贵.初中数学教学中学生自主学习方式初探[J].中国校外教育,2017,(07):61.
[3]肖瑶.中学数学教学中培养学生探索和自主学习的能力[J].现代妇女,2014,(02):116.
作者:沈爱华 单位:江苏省连云港市海庆中
数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!
浅谈数学文化建设
摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。
关键词 小学数学教学;数学文化;数学文化建设
数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。
一、小学数学教师数学文化素养
数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。
1.强化数学文化意识
数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。
2.加强数学文化学习研究
小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。
学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德()的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。
二、小学数学教材数学文化建设
除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。
1.教材数学文化建设研究
在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。
2.教材数学文化校本化建设
鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。
三、小学数学教学数学文化渗透
为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。
1.校园数学文化渗透
数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。
2.课堂数学文化渗透
传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。
数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。
参考文献:
[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.
[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.
浅析数学教育中渗透数学文化
摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。
中关键词:数学文化 价值 精神 兴趣
古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。
很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。
数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?
数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。
没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。
数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。
数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。
数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。
其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。
这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。
数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。
当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。
没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。
年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。
总结
我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。
参考文献:
[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.
[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).
[3]天津教育.2007,(1).
300 浏览 3 回答
268 浏览 3 回答
327 浏览 2 回答
136 浏览 2 回答
216 浏览 3 回答
352 浏览 3 回答
149 浏览 3 回答
216 浏览 2 回答
349 浏览 2 回答
292 浏览 3 回答
254 浏览 4 回答
95 浏览 5 回答
90 浏览 6 回答
122 浏览 2 回答
94 浏览 6 回答