P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。
P<时,认为差异有统计学意义”或者“显著性水平α=”,指的是如果本研究统计推断得到的差异有统计学意义,那么该结果是“假阳性”的概率小于。
扩展资料:
P值的计算:
一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:
左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}
右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}
双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。
若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:
如果α > P值,则在显著性水平α下拒绝原假设。
如果α ≤ P值,则在显著性水平α下不拒绝原假设。
在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。