
数学建模竞赛是数学知识的真正实践。中国大学生数学建模竞赛开展二十余年来,经过萌芽、缓慢发展已逐渐成熟起来,受到了教育部门、教师、学生的普遍重视。下文是我为大家蒐集整理的关于的内容,欢迎大家阅读参考!
浅析数学建模竞赛在高职数学教学中的重要性
摘 要:数学建模竞赛作为高职数学教学中一项重要的竞赛活动,其作为高校课外科技活动中规模最大的活动,在正常有效地开展下不仅促进了高校学生更好地掌握好计算机与数学知识综合运用的能力,而且也为高职学校的数学教学提供了更加科学性、创新性的教学内容和方法。
关键词:数学建模;高职数学;重要性
在高职数学教学过程中有效地运用数学建模竞赛是推进现代化数学教学发展的一项重要内容,其对于学校教学理念的转变、加强数学教学内容方法的改革、构建专业化数学教师团队的发展以及深化学生科技活动的创新具有重要意义。
一、推进高职数学教学理念的转变
随着社会化分工的精细化以及高职学校自身的发展,现在的高等职业技术学校不同于一般的高中教学,其教学任务重在培养面向生产、建设、管理、服务等一线的高技能型的人才,教学的核心在于提高学生的实际处理问题的能力以及创新能力。其中在高职学校数学教学过程中,其最终的目标就是要培养学生对于数学的具体实践意识、动手能力以及具有开创性的活动能力,在新时期对于高职数学专业的学生提出新理念和要求的情况下,在数学教学过程中引进“数学建模竞赛”这一活动,完全突破了传统的重理论教学的数学教学模式,取而代之的是以数学的实际应用能力为核心的数学教学理念。具体来说,数学建模竞赛在教学活动中的有效解决能够让这些学生充分认识到将知识学以致用的目的,与此同时,通过对数学建模竞赛问题的解决可以有效地激发学生对于以后就业、创业的信心和提高这些学生处理问题的逻辑思维能力。可以说,在运用了数学建模竞赛课堂的数学教学中,那些高职学生的数学思维能力会有一定程度的提高,其对于高职学生学习数学应该掌握的应用知识以及具体的学习思路都会有很大程度的改变,在通过参加数学建模竞赛的过程中逐渐地转变自身对于数学学习的理念,进一步提高学生对于数学学习的具体应用能力。
二、加强高职数学教学内容、方法的改革
数学建模竞赛的发展使其更加具有生活性,通常情况下,数学建模竞赛中的内容都是来自于现实中的工程技术以及在管理科学实践过程出现的具体问题,随着数学建模体系和规模的发展,现在的这些竞赛中所涉及的试题质量更加真实、范围幅度也更广泛。从高职数学本身的属性来说,对于基本数学知识的掌握是最基础的,只有这样才能为后期专业课程以及实际问题的解决提供良好的支援。而数学建模竞赛的内容正好是来自于各个不同的学科,只是通过相关的处理之后转化为了数学问题,那么这些高职学生在处理这些建模竞赛中的具体问题时,无外乎通过三种情况对数学进行建模:根据具体资料变化趋势对其进行整合;把在导数应用中所求得的极大值或者极小值作为最优化方法;通过使用一阶微分方程建立简化的数学模型。不难发现,这些对数学进行建模的内容和方法也是在今后的数学实践处理过程中,需要经常用到的知识,但是在原来高职学校数学教学的过程中,通过数学建模竞赛就已经把这些知识贯穿到其教学活动中,其不仅能提高高职数学教学内容的质量,而且也为这些学生学习和应用具体的数学知识提供了更好的方法,可以有效地促进高职数学教育事业的发展。
三、构建专业化数学教师团队的发展
从目前数学建模竞赛中所包含的题目来看,有很多赛题都是来自于实践生活中的科研活动,这种选题的方式,一方面提高了数学建模竞赛的真实性和有效性,另一方面也在一定程度上为高职数学教学的教师带来了挑战,在这种情况下,这些教师不仅必须不断地更新自身的知识库,还要对数学建模的方式以及相关软体的应用进行学习和应用,才能对高职学生数学知识的学习进行指导。具体来说,融入了数学建模竞赛的数学教学模式,其数学教师在教学的实践过程中由原来的知识讲解转变为了教学具体活动的引导者,他们在进行具体课程的教学之前,必须对其教学任务和教学内容录制成为“微课”或者“慕课”的形式,从而为学生学习数学建模的知识提供更多更好的机会,但这也使得这些教师必须对这些内容进行专业化的理解和体会,从而转化为更易让学生学懂的各种学习内容和具体的学习形式。与此同时,在进行数学教学的课程上,这些教师还要为学生解决数学建模竞赛中遇到的问题进行答疑,构建一种具有研讨氛围的课堂模式;在课后,相关的数学教师也要为学生布置或者引导学生解决一些专案任务,形成课前、课中、课后一体化的引导体系,在这其中通过有效数学建模竞赛这一载体,为专业化的数学教师队伍的培养提供了有效的平台。
四、促进学生科技活动创新性的进行
一般情况下,对于数学建模竞赛中那些来自于实践生活中、工业以及其他行业中的具体问题,都要求高职学生在限定的时间内提出具体解决的方案和途径,时间通常情况下是三天,因为时间比较短,很多时候学生想到的很多其他的想法并不能统一付诸实践,所以,可以把数学建模竞赛作为数学教学课后继续学习研究的课题,这对于高职学生进行创新性活动具有重要的推动作用。从近几年高职学校参加数学建模竞赛人数的变化来看,其数量逐年获得了增加,而且其获得的成绩也有了一定的提高,这些参加过数学建模竞赛的高职学生一般都已经具备了不同程度的科研意识和创新意识,在此基础上,在高职学校通过开展高职科技创新专案活动,可以更进一步地探索和挖掘这些高职学生的创新才能,与此同时,通过拓展数学建模其他相关活动的进行,如,构建第二课堂、开展数学建模讲座、组织数学建模培训班以及构建数学建模的具体方式等活动,都可以推动数学建模竞赛在高职数学教学中的应用价值,进一步促进这些高职学校学生对创新性科技活动的积极性和创新成果。
总之,在高职数学教学过程中,引入数学建模竞赛是顺应现代高职学校数学教学发展的需要,通过对数学建模竞赛进行有效的运用,不仅可以提高学生学习数学知识的各种能力,而且对于高职数学教学的改革以及专业化教师队伍的建设都有很重要的意义。
参考文献:
[1]周玮.基于数学建模竞赛促进高职数学教学改革[J].现代教育,201203.
[2]叶其孝.把数学建模、数学实验的思想和方法融入高等数学课的教学中去[J].工程数学学报,200308.
>>>下页带来更多的
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
随着科学技术特别是信息技术的高速发展,数学的应用价值越来越得到众人的重视。我整理的数学科技论文,希望你能从中得到感悟! 数学科技论文篇一 数学教学中学生科技创新精神的培养 摘要: 创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的措施。因此,在进行数学概念的创造性教学时,教师要特别注意对学生创新精神的培养。 关键词: 培养 创新 数学教学 能力 青少年作为跨世纪的一代,肩负的历史重任更艰巨。世界现代科技革命浪潮汹涌卷来,时代给中国人民以挑战,历史给中国人民以机遇。作为培养未来建设者的教师如何面对历史的挑战?如何培养青少年的数学科技创新能力,开展发明创造活动?这是每一位教师应该思考的主要问题。 我们培养青少年的数学科技创新能力,开展发明创造活动,其目的不在于制作出几件科技作品,不在于在各项比赛中获得名次,而在于培养他们的创新精神和科学素质。创新精神和科学素质是现代科学技术高速度和综合化发展对未来建设者的要求,是现代化社会对现代人的基本要求,它是从小养成的、不断发展的。那么数学教学中应如何培养学生的科学创新能力呢? 一、培养学生的科学创新精神 创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的措施。一个人的创造力能被开发到什么程度,能否为社会做出创造性的贡献,在很大程度上取决于他是否具备创新精神。如果一个人不想去创造,即使他的智力水平再高,创造力再高,一切也都等于零;而如果他具有愿意为科学和人类进步献身的高尚品德,那就会给他的创造力发展提供巨大的精神动力,他就可能会为社会做出创造性的贡献。因此,在进行数学概念的创造性教学时,要特别注意对学生创新精神的培养。例如可以通过多媒体手段进行教学,使学生对要学的新概念、新知识感兴趣,以激发学生的求知欲和好奇心;通过有效的激励手段,鼓励学生大胆质疑问难,大胆进行联想和猜测,以培养学生的挑战性和冒险性;通过思想教育,使学生树立为社会进步做出贡献的远 大理想,培养学生爱祖国、爱人民的优良品质等。 二、创造思维的新视角 创新需要思维,创新也需要会学习的能力,要借它山之石,为我所用。首先有一个学习的问题。在信息化时代里,知识创新的速度不断加快,知识更新的周期不断缩短,人们对知识的占有将由静态变为动态。也就是说,人们的学习不会因学校学习的结束而结束。然而面对浩如烟海的知识,每个人不仅要有学习新知的能力,而且要有鉴别新知的能力和技巧。所以变革传统的被动接受、死记硬背、机械操练的学习方式,倡导主动参与、乐于探究、勤于思考的学习方式,培养学生学会学习是适应现代社会发展的需要。因此教师要发挥知识的智力因素,做到发散思维与收敛思维的辩证统一,发展学生的创新思维能力。 数学的创造往往开始于不严格的发散思维,而继之以严格的逻辑分析思维,即收敛思维。发散思维虽然能够提供有价值的重要设想,但其成果必须严格验证。发散思维富于创造性,能够提供大量新思路、新方法。但是,单靠发散思维还不能完成创造性思维活动。因此,发散思维和收敛思维要相辅相成、辩证统一,偏视任何一面都是不可取的。 运用“普遍联系和发展”的观点处理课本的例题、习题,发挥知识的智力因素,深入挖掘创新素材和其潜在功能。在保持已知条件不变的情况下,探索能否得出更深刻、更广泛的结论,或改变命题条件、结论的若干元素,组成新型的更一般的命题,并探究其正确性,不落俗套,培养学生思维的广阔性。另一方面,要注重知识的纵向延伸,使学生的思维由表及里、由浅入深地不断递进,培养学生思维的深刻性。 杨振宁博士在总结科学家成功之道时说:“成功的秘诀在于兴趣。”可见,兴趣是创造思维活动成功的先导。“兴趣是最好的老师”。一个人的创造性成果,无一不是在对所研究的问题产生浓厚兴趣的情况下所取得的。兴趣是人们心理活动共有的特征。一个人要在学业上有所发展、有所创造,首先必须对学业满腔的热忱和极大的兴趣,肯用全副精神去做。学生的学习动机和求知欲、学习积极性和主动性是帮助学生形成与发展创造性思维能力的重要条件,但它们不会自动涌现。这需要教师从创设认知“冲突”中去激发学生学习的兴趣。所以,教师要采用灵活多变的教学方法,创设情景,着力营造一种轻松愉快的学习氛围,从而培养学生的学习兴趣和热情,用妙趣横生的数学问题吸引学生去思考、去探索、去创新。 灵活多变的教学是培养学生创新思维能力的崭新途径。只要教师充分发挥自己的聪明和智慧,创造思维的新视角,以新颖的方式去诱导、激发学生的兴趣,就一定能使学生向往科学,追求真理。学生的创造意识也会随着培养起来。 课堂教学是一个启发、培养学生创造意识的重要场所,教师不能满足于具体的学科知识,还要揭示知识背后所凝结的历史、观念、方法、精神等,特别是其中的人文内容和创造精神,以及科学史上创新过程的介绍,使得课堂教学成为“多维营养”的源泉,以指导学生克服多年的“应试教育”所带来的消极影响,极快地完成从知识的继承者到知识的创造者的转变。 三、激励学生大胆探索,培养创新思维能力 教育家第斯多惠曾说:“教学的艺术不仅仅在于传授本领,而在于激励、呼唤、鼓励。”青少年的天性是好奇和求异,凡事喜欢问个究竟和另辟蹊径。对此,教师绝不能压抑而应引导和鼓励,水到渠成。 教育激励常常有如下的几种方式:1.榜样激励,要以学生中创新的事例为榜样,常言道“榜样的力量是无穷的”。2.前景激励,青少年学生向往美好的理想,积极进取,大胆创新,开拓前进的道路。3.参与激励,实践出真知,训练出才干,培养学生的创新精神和实践能力。4.表现激励,勇于表现自我是青少年的特点,要让学生充分的展示自己的特长,对培养和发展学生的爱好与技能产生了无形的推动力。5.竞争激励,有竞争才有发展,同学间你追我赶,争先恐后,发挥了主体作用,有效地推动了数学创新活动的开展。6.成功激励,成功给人带来光荣、幸福等美好的感受,更能鼓励成功者不断进取,发展了学生的创造性。7.表扬激励,及时、充分地肯定学生的闪光点,热情地表扬学生的聪明智慧,是激励学生大胆创新的良好方法。 陶行知先生说:“发明千千万万,起点是一问。”一池死水,风平浪静,投去一石,碧波涟漪,可谓一石击起千层浪。教师教学要温故知新,巧妙设疑,指导学生的创造思维活动,还要善于设疑,去撞击学生思维的火花,进而激发学生创造思维的波澜。 教师要提倡和鼓励学生“标新立异”、“无中生有”、“异想天开”和“纵横驰骋”,从而培养学生勇于探索、敢于创造的独创精神。想象力是引导学生创造性思维的源泉,人类思维中无与伦比的想象力是使科学不断进入未知领域的原始动力。而观察力是激发学生创造思维活动的关键。教师要指导和鼓励学生伸展智慧的触角去观察和探索,去想象和创新,做开拓创新的优秀人才。 引导学生独立思考,大胆探索,让学习知识的过程中体验发现与创造。指导学生运用已有的知识、学习经验、学习方法去探索与发现,从而获得新知。对学生来说,作业是学生认识上一个再创造的过程。 从对知识初步理解到融会贯通是一个漫长的心理历程。学生独立探索、解决问题的过程,就是学生发挥聪明智慧,把各种知识构建成思路通道的建筑工程,也是培养学生创新精神和实践能力的教育过程。 例如,指导学生在作业中要大胆地探索,通过作图、列式、运算得到正确的结果。作业中多种思路(方法)解题特别能反映学生思维的积极性和创造性。在作业评讲中要创设民主型、探索性的课堂气氛,因势利导,反映学生多种思路(方法)解题的创造性,注重创新思维能力的培养。热情表彰、鼓励学生的新作,最好由教师板书学生作业的全过程,分析学生的思路,指出其新颖之处和思维闪光点,激励全班学生积极进取,发展创新思维。结合教学内容指导学生研究性学习,发挥知识的智力因素,大胆探索解题思路,勇敢地提出新解法。 课堂教学是师生情感交往的场所,教师要鼓励学生积极参与讨论、质疑、发表各种见解,形成师生间的能动交流。教师在教学中,要力求打破常规,引导学生从多方位去思考问题,对疑难问题能提出较多的思路和见解,培养学生一题多解、一题多思、一题多变、举一反三的创新思维。创造性思维的实质就是思维活动中选择、突破和重新建构这三者的有机统一。选择是解开人类思维创造之谜的第一把钥匙。创造性思维中的突破不是为了使现存的体系的得到改良,而是为了使新的思想大厦拔地而起。 想象力是引导学生创造性思维的源泉,人类思维中无与伦比的想象力是使科学不断进入未知领域的原始动力。观察力是激发学生创造思维活动的关键,教师要指导和鼓励学生伸展智慧的触角去观察和探索,去想象和创新,做开拓创新的优秀人才。 参考文献: [1]崔录等.现代教育思想精粹.光明日报出版社. [2]布鲁纳.教育过程.上海人民出版社. [3]吴兴长.数学教学中非智力因素的培养. [4]北京教育行政学院.教育心理学讲座,2000,1. 数学科技论文篇二 再谈现代科技对小学数学教学的有力支撑 摘 要: 在以学习能力为核心因素的新课程理念下,我们必须科学、合理而又充分地借助以网络资源为主的现代信息技术,才能更快更好地实施和实现素质化教学,这既是科技教育时代的潮流和象征,又是发展未来教育事业的必然要求。理论和实践同时表明,现代教育技术具有无可比拟的优势功能,不仅能够有效扩充课堂教学的信息化容量,增强教师控制教学信息的灵活性,而且能够体现教学活动中的主导作用和主体作用,及时有效地实现课堂教学的反馈与纠偏改错,还能有效地发展和强化素质教学活动的个性化特征。本文作者结合在小学数学教学中的实践与体会,试对此作简要的阐述。 关键词: 小学数学教学 现代教育技术 有效支撑 自从现代信息技术进入校园并逐步登堂入室以来,各类教学活动越发呈现出令人欣喜的活力和魅力,在转化教育观念、改革课程教学、更新教学方式、培养学习能力、激发创新意识和促进教学相长等方面,不仅提供了有效支撑,而且实现了新的增长点,从而表现出作用巨大、影响深远的特征。在小学数学教学中,笔者尝试将传统教学媒体与现代教学媒体有机地结合起来,充分发挥各自的教学功能和优势,在相互补充、互为促进和相辅相成之中达到综合性效果,不仅有效地促进了课堂教学结构的优化,而且实现了课程教学效果的最优化。本文从以下几个方面试简要阐述之。 一、合理运用现代教育技术,可以扩大信息容量,便于教师灵活控制教学。 一方面可以利用其海量存储功能,把一些图形、题目及其分析和解答过程事先储存起来,在课堂教学中适时适量地呈现出来,在学生面前再现出来。另一方面还可以利用其高速处理信息的特点,快速、灵活而又准确地进行作图,为数学课堂教学增加知识容量。如此不仅大大丰富了课程教学的方法和手段,拓展了师生双方的交流渠道,而且有助于执教者对教学目标信息进行实时控制,极大地提高了课堂教学的质量和效率。比如,在教学《梯形面积的计算》内容时,笔者借助于多媒体技术手段,通过“旋转—平移”的技术处理将梯形转化成平行四边形,接着利用平行四边形的面积有效地推导出梯形的面积,从而帮助学生灵活快捷地掌握了重点知识,也突破了本课的难点内容。与传统教学模式进行比较,后者的优势明显地在于,通过形象直观的动画模拟演示,让小学生在一目了然之中既乐于接受又易于接受。从而在节约时间、提高质效的同时,不仅有效地拓展了小学生的数学学习思维,而且在寓教于乐之中培养了他们的逻辑推理能力。 二、合理运用现代教育技术,可以创设有效情境,激发学趣和促进思维。 教育心理学研究表明:在学校教育中,学生的学习情感体验往往由具体的教学情境所派生和决定。数学课程具有抽象性、严谨性和应用广泛性的基本特征,这些特性在传统教学模式下(呈现三大弊端,即多讲解少思考、多练习少活动、多批评少鼓励)往往无法得以充分体现出来。因此,在小学数学教学过程中,我们要借助多媒体技术手段,紧密联系学生的生活实际,从他们的生活经验和已有知识出发,努力创设生动有趣的教学情境,从而有效实现融认知、能力和情感为一体的“三维目标教学”。比如,在行程内容的教学过程中,教师可以把生活中的人、自行车、摩托车和汽车等“搬进”多媒体画面,并利用Flash技术使其运动起来。为了帮助学生进一步了解实际生活中的行程问题,执教者可以运用多媒体创设相应的情境,如“相向而行”“背向而行”“相遇”“速度和”“两地相距”等,也可以改动条件与问题进行变化逆转,从多个角度帮助小学生掌握和理解“路程、速度、时间”的数量关系。 三、合理运用现代教育技术,可以显示形成过程,在思维困惑处点拨疏导。 在小学数学教学过程中,我们可以借助多媒体技术,把一些抽象性较强的数学概念、法则和原理等内容,通过图像显示和动画模拟等手段形象生动地表现出来,从而有效地帮助学生建立表象、深化理解和强化认识。比如,在教学“周长”与“面积”的数学概念时,我们可以利用多媒体技术,通过“水平移动、拉直呈现、闪烁填色”等动画模拟,把一个长方形的周长及面积的形成表象过程生动有趣地呈现在学生面前,以有效增进他们的理解。此外,由于小学生缺乏足够的空间想象思维能力,对他们来说,理解几何形体的组合图形是有一定难度的。针对这样的情况,执教者可以借助多媒体技术手段,动态演示“切割”“旋转”“提取”等变化过程,实现化难为易、化静为动、化隐为明的教学目标,让学生在认真观察之中看得清清楚楚、明明白白。这样能够有效地培养和发展他们的观察能力、思维能力、空间想象能力。比如,小学生在学习圆周长的计算方法后,常把圆周长的一半误认为是半圆的周长。对此,执教者可以用多媒体演示半圆图,让弧长和直径分离,使得学生理解“半圆周长是由哪些组成的”,从而帮助他们有效地突破思维瓶颈,冲出局限思维的“低洼之地”。 四、合理运用现代教育技术,可以发挥双主作用,及时有效地反馈和纠偏。 实践表明,多媒体教学的“人机交互性”特征,能够有效强化“教师主导”和“学生主体”,体现新课程理念下的素质化教学要求。主要体现在:在信息流向和流程控制上,教师根据课堂教学实际情况,以及信息特点、学生特点,能够对信息的表现形式和频度进行实时控制,从而发挥教学中的主导作用;学生通过多媒体可以控制文字、图像等使之自动演绎出结果,利用其快速功能可以充分展示思维的发展方向以拓展学生的思维广度,利用其储存功能反复演示所需内容,通过上机操作控制信息传输的速度和次数等方面,使得学生有着更高的参与度,从而充分发挥教学中的主体作用。通过多媒体网络教学,还能有效实现生生之间、师生之间的多向交流。此外更为重要的是,在小学数学教学过程中,多媒体辅助教学的好处还充分体现在:能够“节约时间、提高效率”,有利于快速高效地开展教学活动;能够实现“当堂反馈、及时补救”,不让错误在头脑里“滞留、积淀、过夜”;能够实现“多变互动、分层教学”,有利于实施因材施教活动,等等,对推行素质化教学有重要的作用。 看了“数学科技论文”的人还看: 1. 大学数学科技论文范文 2. 大学数学科技论文 3. 数学系毕业论文范文 4. 关于数学的毕业论文 5. 关于科技论文2000字
274 浏览 8 回答
259 浏览 3 回答
185 浏览 3 回答
303 浏览 4 回答
307 浏览 4 回答
221 浏览 3 回答
202 浏览 4 回答
141 浏览 3 回答
288 浏览 8 回答
90 浏览 5 回答
281 浏览 5 回答
344 浏览 8 回答
349 浏览 3 回答
240 浏览 3 回答
294 浏览 4 回答