刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案 统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。 医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。 在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。 故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。 当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。 显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。表1 一般情况下不同资料的统计指标与检验方法的关系资料类型 统计指标 统计检验方法 计量资料 均数、标准差 t检验、F检验等 计数资料 率、构成比 χ2检验等 半定量资料 率、构成比 秩和检验、Ridit分析表2 《中华创伤杂志》第12卷1~6期、 增刊显著性检验方法使用频数检验方法 应用次数 检验方法 应用次数 t检验 27 直线相关与回归分析 5 χ2检验 16 拟合线性回归 1 F检验 24 相关分析 6 Q检验 2 非参数统计 4 u检验 1 未注明方法 6表3 常用显著性检验方法的选择统计资料比较类型 显著性检验 小样本均数与总体均数相比较 t检验 小样本均数相比较 t检验、F检验 两个或多个大样本均数与 总体均数相比较 u检验、t检验 大样本均数相比较 u检验、t检验 配对计量资料 配对t检验 两个率的比较 u检验、χ2检验 多个样本率的的比较 χ2检验 配对计数资料两种属性的 相关分析及其差别的比较 χ2检验
生物医学动物实验研究论文
1实验设计
在开展生物医学研究时,研究者通过正确地运用统计学知识,可直接影响研究的质量。统计学设计的任务在于对研究的部署、实施,直到研究结果的解释进行系统的安排,力争做到以最少的人力、物力获得可靠的结论和信息。其目的在于确定某种处理是否会表现出某种特定的效应。在实验设计时应遵循惟一差异原则,即在进行两组比较时,两者之间仅有因处理因素不同而引起的差异,而其他实验条件相关的非处理因素都应保持等同。然而,处理组与对照组在反应上表现出的差别并不一定意味着是处理的结果。另有两种引起差别的可能性,即偏倚和偶然性。偏倚是指系统性差别,它不是因组间在处理上的不同所引起。生物医学实验中统计学设计和分析的目标就是消除潜在的偏倚,减少偶然性[2]。
实验的偏倚和控制
偏倚是在研究中从设计到实验实施和结果分析的各环节存在一些人为的、有系统倾向的非随机误差,它不是由于抽样造成的,而是某种偏性使得实验结果偏离它的真值。从所选择的生物医学问题到研究方案的制订与实施、实验的完成过程、实验的分析与解释,乃至实验结果的发表,均可能存在各式各样的偏倚[2]。这种偏倚常常表现为系统误差。偏倚的大小取决于研究的方法和具体的实验条件。常见的偏倚主要有选择性偏倚、观察性偏倚和混杂性偏倚。必须认识实验过程的偏倚,从实验设计起直到整个研究过程结束均要加以控制。正确的实验设计可控制选择性的偏倚,事前人为控制和采取相应的措施可避免和减少观察性的偏倚。对于混杂性偏倚,可将重要的混杂因素在设计阶段进行分层随机设计,使混杂因素在组间分布均衡;在统计分析阶段将混杂因素作为分层因素或采用有协变量分析方法,以消除混杂因素的影响。只有有效地控制或消除偏倚,方可减少结果的假阳性或假阴性。
减少偶然性的潜在影响
偶然性因素的作用可以减少,但不能完全排除。因为即使是在精心实施的研究中,接受同样处理的动物,其反应也不可能完全一样。适当的统计分析可使实验人员评估出现假阳性的概率,即根本不存在处理效应的情况下观察到差异的概率。这种概率越小,实验者发现真实效应的可能性就越大。为了更有把握地检测出真实效应,有必要减少偶然性的作用,并通过实验设计确保能在“噪声”之上识别真正的“信号”。
实验设计的要素
要消除生物医学实验中潜在的偏倚,减少偶然性,就应对实验对象、处理因素和实验效应这三个实验设计要素,按照对照、重复、随机化和均衡四项原则进行周到的设计与控制[3]。实验对象实验中处理因素所作用的对象称为实验对象。不同性质的实验研究需要选取不同种类的实验对象,一个完整的实验设计中所需实验对象的总数称为样本含量。生物医学试验中考虑动物实验对象时应关注以下几个方面:①动物种属的选择:选择实验动物的种属与品系时,尤其需要注意其背景反应的水平。为了将反应“信号”水平最大化,常常意味着应避免选择那些背景反应水平极低的动物种属或品系,但如果采用过度反应的动物种属或品系也同样会出现问题。动物物种选择中的其他问题,无论是实际问题(寿命、体型、易得性、对动物学特征的了解情况)或是理论问题(生化、生理或解剖结构与人的相似性),都需要从专业的角度认真加以考虑和权衡。②动物的数量:虽然从统计设计角度考虑可得出某项实验所需的动物数(样本含量),但所得出的数值往往很大。因此,虽然样本含量估计是保证结论可靠性(精度和检验效能)的前提,但基于实验的可操作性及经济原则方面的考虑,应结合统计学的计算结果与以往的生物医学研究经验予以确定。③动物的体重与年龄:为确保实验对象的同质性,实验中所使用的动物体重与年龄应尽可能相近;动物体重的标准差不应超出平均值的10%;啮齿类等小动物年龄相差不应超出1周,大动物年龄相差不应超出1个月。④动物的分层:为了准确检测一种处理因素引起的差别,各处理组在可能影响实验结果的其他非处理因素方面应尽可能具有同质性。当存在动物亚系间的差别时,有两种方法可得到更为准确的结论。一是在结果分析阶段将亚系作为一个“分层变量”处理,包括对两个亚系的结果进行单独分析,然后将结果综合,得出处理效应的总结论;二是将亚系作为实验设计的“区组因素”,这种情况下可使对照组与处理组中每个亚系动物数量相等。除以上所讨论的“亚系”之外,其他的非处理因素,如性别、窝别、体重段等也可作为分层变量进行局部控制,并据此进行分层随机化分组。处理因素设计实验研究时,要明确研究中的处理因素和影响实验效应的非处理因素。研究者希望通过对研究设计进行有计划的安排,从而能科学地考察其效应大小的因素称为处理因素或实验因素;研究者往往忽略对评价实验因素作用大小有一定干扰的重要的非处理因素或非实验因素(如动物的窝别、体重等);其他未加控制的许多因素的综合作用统称为实验误差。实验结果是处理因素和非处理因素共同作用而产生的实验效应,因此如何控制和排除非处理因素的干扰,正确显示处理的效应,是实验设计的基本任务。实验效应实验效应是处理因素作用于受试对象的反应和结果,是反映实验因素作用强弱的标志,它通过观察指标(统计学常将指标称为变量)来体现。如果指标选择不当,未能准确反映处理因素的作用,获得的研究结果就缺乏科学性,因此选择好观察指标是关系整个研究成败的重要环节。指标的观察应避免带有偏性或偏倚,要结合专业知识,尽可能多地选用客观性强的指标,在仪器和试剂允许的条件下,应尽可能多选用特异性强、灵敏度高、准确可靠的客观指标。对一些半客观(如尿液pH试纸读数值)或主观指标(行为测量、病理观察),一定要事先规定读取数值的严格标准,只有这样才能准确地分析实验结果,从而提高实验结果的可信度。
实验设计的原则
为了防止结果的偏倚,保证实验结果的准确性和最大化的表达,在进行生物医学实验设计时必须遵循统计学设计的对照、重复、随机化和均衡四个基本原则。生物医学实验中对照组的设置必须具备三个条件:①对等原则,即惟一差别原则,除处理因素外,对照组具备与实验组对等的非处理因素。在相互比较的各组间,除了给予的处理因素不同外,其他方面应与实验组具有一致性,如相同的实验单位来源(动物种属、体重等)和相同的实验条件、操作方式和喂养环境等。②同步原则,对照组与实验组设立之后,在整个研究进程中始终处于同一空间和同一时间。③专设原则,任何一个对照组都是为相应的实验组专门设立的。不得借用文献上的记载或以往结果或其他研究资料作为本研究之对照。
生物医学中常用的实验设计类型
如果需要在同一实验中同时评价几种不同的效应,实验者应该安排能区别各自效应差别的实验设计方法。生物医学中常用的实验设计有以下几项。完全随机设计完全随机设计是生物医学动物实验中最为常用的一种实验设计方法,它是一种单因素有k个水平(k≥2)组的实验设计。即实验设计可设置一个对照或多个剂量组的实验方案。本设计保证每个实验动物都有相同机会接受任何一种处理,而不受实验人员主观倾向的影响。本设计应用了重复和随机化两个原则,因此能使实验结果受非处理因素的影响基本一致,真实反映出实验的处理效应。随机区组设计随机化完全区组设计,简称随机区组设计,又称配伍组设计,是配对设计的扩展,它将几个条件相同的受试者划分在同一个区组或配伍组,然后再按随机的原则,将同一配伍组的受试者随机分配到各实验组。该设计方法的优点是每个区组内的k个实验单位有较好的同质性,比完全随机设计更容易察觉处理间的差别。这种方法须特别注意的是要求区组内实验单位数与处理数相同,实验结果中若有缺失值,统计分析将损失部分信息。拉丁方设计拉丁方设计从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成区组,是比随机区组设计多一个区组因素的设计。在拉丁方设计中,每一行或每一列都成为一个完全区组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,实验处理数=横行区组数=直列区组数=实验处理的重复数。析因设计析因实验设计又称全因子实验设计,属于多因素、多水平单效应的设计。它不仅可以检验每一因素各水平之间的效应差异,而且可以检验各因素之间的交互作用。交互作用是指一个因素不同水平间的效应差受另一因素的影响,包括协同交互作用和拮抗交互作用。析因实验主要用于分析交互作用,当因素及水平数过多时,所需的实验对象数、处理组数和实验次数大幅度增加,故一般采用较简单的析因实验。含有较多因素和水平的实验一般采用正交实验设计[5]。
2生物医学动物实验的描述统计学
生物医学实验资料的类型
生物医学实验对实验对象(动物)进行干预后测定的观测指标通常有以下类型:①连续性数据:测定结果表现为有数字大小和单位的数据,统计上称定量资料,如生理、生化指标,体重值,器官重量等。②分类数据:测定结果表现为按某属性划分的定性类别,统计上称为定性资料,具体又可以分为二值资料、多值名义资料和多值有序资料。如某反应为出现或不出现,死亡或未死亡,有畸形或无畸形;病理损害的严重程度(无、轻度、中度、重度)等。
统计描述指标
描述性统计学(或归纳统计学)是对样本观察/测量数据频率分布的定量研究,描述性统计的目的在于:①对测量值或观察值进行归纳浓缩,用统计量、统计图或统计表的形式表现;②估计总体分布的参数。资料的整理与探索对于某一测量指标,一般应从文献资料中了解其分布类型。如果没有判断概率分布的理论基础,应重复以大样本测定,绘制样本的频数分布图(理论上样本量要大于100),并经统计学检验拟合其分布。数据的描述统计量①连续性数据的频数分布:通过对样本资料编制频数分布表或做茎叶图,以确定资料分布的类型、频数分布的集中趋势和离散趋势、估计总体参数,也便于发现离群值。②中心位置的描述统计量:描述数据分布的集中趋势,常用指标为算术均数、中位数、众数、几何均数等。③离散程度的描述统计量:描述数据分布的离散趋势,常用指标为标准差和方差、极差和四分位数间距、变异系数和离散系数等。④统计学图表:统计图包括连续性数据分布的直方图、茎叶图,表示数据中心位置和离散程度的点杆图(做图时表示均数和标准差)和盒须图(做图时表示中位数、极差、四分位数间距),描述构成比数据资料的百分条图、饼图,描述经时变化趋势的线图,以及预测和检验分布类型的概率-概率图(P-P图)等[6]。统计表具有简单、明了、易于理解、便于比较的优点。编制统计表时原则上应当重点突出、层次分明、避免层次过多或结构混乱。一般的统计表应为三线表,表中只有横线,无竖线和斜线。统计表的标目应层次清楚,不宜过于复杂。
3生物医学动物实验的假设检验
生物医学动物实验中最常见的情况是给予不同受试物后进行组间比较,通过统计学中的假设检验,说明受试物的作用。假设检验时应注意以下问题。
检验方法的选用依据
资料的类型和变量的数目不同类型的资料(定量、定性)的组间比较应采用不同的统计检验方法。单变量、多变量的`统计检验方法也各不相同。实验设计类型应该根据实验设计的具体类型选择对应的统计检验方法,以便得到处理组效应的真实结论。检验方法的前提条件选用假设检验方法前,应了解所分析的数据资料是否满足相应检验方法的前提条件,如t检验和方差分析等参数检验方法要求数据满足正态性和方差齐性,2检验要求样本含量大于40且理论频数大于5。
正态性检验及拟合优度检验
统计学假设检验须判定样本的频数分布是否符合某一理论分布,如符合要求就可按此理论分布来进行统计学处理。对正态分布可采用正态性检验,其他分布可用拟合优度检验。通常可通过查阅文献,了解实验参数符合何种理论分布。
方差齐性检验
连续性数据未达到参数法统计分析前提的第二种原因即为方差不齐。一般而言,数值愈大,其固有的变异性也愈大。例如,若某组动物的平均反应值为100,其数值范围可能为80~120;而另一组动物的平均反应值为300,其数值范围可能会扩大至240~360。解决方差不齐的措施是进行数据转换。若数据的标准差与平均值成正比,在统计分析前宜将数据转换为对数值之后再进行分析,据此,不仅数据的变异度与平均值大小无关,同时还可确保其更符合正态分布。若数据变异度增加幅度与平均值的关系不太明显,采用平方根转换则更易使数据的变异度与平均值大小无关。某些数据经对数或平方根转换后可能仍存在方差不齐,此时宜采用非参数检验。
单侧检验与双侧检验
检验假设选择单侧检验或双侧检验,应事先根据专业知识做出选择。一般而言,若研究目的仅须了解是否存在组间差异、实验者无法预测组间变化的方向以及实验者希望获得正负两方面的结果时,应采用双侧检验。若事先可预测组间差异的变化方向,实验者仅对某一方面的重要性感兴趣,实验者仅希望了解与对照组差异或正或负一个方向,则应采用单侧检验。此外,剂量设计预试验中应采用双侧检验,正式试验在了解相关信息后可采用单侧检验。
多重比较及多重性问题
生物医学实验经常在处理组和对照组之间做多个变量的比较。即使不存在真正的实验效应,也有可能纯粹由于偶然性而有一个或多个变量在5%检验水平出现显著性差别。除了上述均数多重比较导致Ⅰ类错误概率增加的多重性问题之外,其他的多重性问题还包括多次的中期分析、关注多个结局、亚组间的多重比较。处理多重性问题的原则包括:①预先计划进行多重比较;②限制比较的次数;③多重比较时采用更严格的界值标准;④多重比较具有生物学方面的依据。
观察值或实验对象的独立性
许多统计检验方法要求比较的观察值或实验对象相互独立,如二项分布的率检验、t检验和方差分析等。但是,有的生物医学实验中观察单位并不独立。例如,生殖和发育研究中就存在窝效应:由于遗传因素、宫内的发育环境和药物的代谢环境相似,与异窝胎仔相比,同窝胎仔之间对毒性效应的反应概率趋于系统,即同窝内数据为聚集性数据,这就是一种常见的非独立数据。在统计学分析时,忽略数据的窝内相关性具有潜在的风险;因同窝母鼠所产k个胎仔的观察值存在共性,其所提供的信息不及k个独立的来自不同母鼠所产胎仔所提供的信息;窝内相关性愈大,其信息量愈少。聚集性数据的均数标准误小于独立的数据,因此,若基于观察值独立的统计分析方法,就会增加犯Ⅰ类错误的概率,即假阳性的风险增加,降低实验的有效性。
历史对照数据的应用
某些情况下,尤其是在发生率较低的情况下,单项研究可能提示处理可影响肿瘤发生率,但无法得出明确的结论。可能想到的分析办法之一是将处理组的数据与来自其他研究的对照组动物相比较。虽然历史对照数据具有重要意义,但值得强调的是,众多原因可导致不同研究之间的变异度大于研究之内的变异度。动物来源、饲料及饲养条件,研究期限,研究中的动物死亡率、读片的病理学家等均可能影响最终的肿瘤发生率。故此,忽视这些差异,将处理组的肿瘤发生率与合并的对照组发生率相比较,可能得出严重错误的结果,并进而明显夸大统计显著性水平。Tarone[4]曾对历史对照组的比率数据分析进行过综述。
假设检验的局限性
首先,假设检验中的P值并未提供有关处理诱发效应大小的直接信息。某一受试物可诱发一定量的、反应的增加,但增加的幅度是否具有统计显著性则取决于研究的规模和数据的变异性。在规模较小的研究中,有可能错失较大、重要的效应,尤其是在检测终点测量精度不高的情况下。相反,在规模较大的研究中,较小、非重要的效应则具有统计显著性。例如,D药与C药相比,降血压效应相差近30mmHg,但因为例数仅10例,假设检验未发现显著性差异(P=);相反,B药与A药相比,降血压效应仅相差,但因为例数达500例,假设检验却发现存在显著性差异(P<)。由此可见,统计学显著性与效应大小无直接相关性。因此,愈来愈多的统计学家主张以处理组与对照组差异值的95%置信区间表述处理的效应。据此,若处理反应的增加值为10个单位(95%置信区间3~17单位),则该区间包含真实差异的几率为95%。若置信区间的下限大于零,则双侧检验的P值小于。其次,假设检验无法消除实验设计或实施不当所带来的影响。虽然前述的分层分析等有助于发现真实的差异,但若实验设计存在偏倚,或实验实施过程中存在偏差或失误,假设检验方法一般也于事无补。因此,在生物医学实验过程中应注重对实验设计或实施过程进行严格的质量控制和质量保证措施,强化GLP规范意识。其三,对统计学分析本身的质量控制和质量保证也是确保研究质量的重要环节。所用统计分析软件包应经过充分的认证,以确保分析结果的准确、可靠性。数据的录入、核对和分析结果的报告与归档,均应制订并严格执行相关的标准操作规程。综上所述,在动物实验研究的多个环节,统计学中的相关理论和方法都能够发挥重要作用。统计学不仅可以保证结果的科学性和可靠性,在很多情况下也可以极大地提高研究效率,节约研究成本。在这里还必须强调,除了实验后期的数据分析以外,在实验方案的制定阶段也需要统计学人员的早期介入,这样有助于避免实验设计出现大的偏差和漏洞,有利于研究目标的顺利实现。
医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 检验t检验是英国统计学家 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显著性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学著作。目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显著性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显著性意义时,再进行多个样本均数的两两(多重)比较。3.卡方检验(χ2检验)χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。常用的χ2检验分为如下几类:①2×2表χ2检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2值进行连续性校正。因为T值太小,会导致χ2值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2值也有偏差,需要用2×2表χ2检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显著性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2值进行校正。③R×C表χ2检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显著性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显著性差别作出结论。 2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ因此,对于适用参数检验的资料,最好还是用参数检验。秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。4. 非参数检验非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。
可以找专业的医学论文辅导机构啊。或者楼主就去“死缠”你的老师或者有经验的作者、医生吧。其实,我个人认为楼上这位朋友的回答挺好的。
217 浏览 3 回答
239 浏览 4 回答
113 浏览 4 回答
130 浏览 4 回答
268 浏览 4 回答
109 浏览 5 回答
307 浏览 4 回答
168 浏览 3 回答
168 浏览 3 回答
155 浏览 4 回答
115 浏览 3 回答
262 浏览 4 回答
177 浏览 3 回答
264 浏览 2 回答
173 浏览 5 回答