下面Python代码来演示如何编程处理心血管冠脉造影DICOM图像信息。1. 导入主要框架:SimpleITK、pydicom、PIL、cv2和numpyimport SimpleITK as sitkfrom PIL import Imageimport pydicomimport numpy as npimport cv22. 应用SimpleITK框架来读取DICOM文件的矩阵信息。如果DICOM图像是三维螺旋CT图像,则帧参数则代表CT扫描层数;而如果是造影动态电影图像,则帧参数就是15帧/秒的电影图像帧数。def loadFile(filename):ds = (filename)img_array = (ds)frame_num, width, height = img_array, frame_num, width, height3. 应用pydicom来提取患者信息。def loadFileInformation(filename):information = {}ds = (filename) information['PatientID'] = ['PatientName'] = ['PatientBirthDate'] = ['PatientSex'] = ['StudyID'] = ['StudyDate'] = ['StudyTime'] = ['InstitutionName'] = ['Manufacturer'] = ['NumberOfFrames'] = return information4. 应用PIL来检查图像是否被提取。def showImage(img_array, frame_num = 0):img_bitmap = (img_array[frame_num])return img_bitmap5. 采用CLAHE (Contrast Limited Adaptive Histogram Equalization)技术来优化图像。def limitedEqualize(img_array, limit = ):img_array_list = []for img in img_array:clahe = (clipLimit = limit, tileGridSize = (8,8))((img))img_array_limited_equalized = (img_array_list)return img_array_limited_equalized