2006 年第26 卷 有 机 化 学 Vol. 26, 2006第2 期, 260~262 Chinese Journal of Organic Chemistry No. 2, 260~262* E-mail: wuxiaohong@ March 14, 2005; revised June 2, 2005; accepted August 26, 2005.·研究简报·钯碳催化法合成4,4'-二甲基-2,2'-联吡啶吴晓宏* 杨占成 秦 伟 姜兆华(哈尔滨工业大学应用化学系 哈尔滨 150001)摘要 以4-甲基吡啶为原料, 钯碳催化合成了4,4'-二甲基-2,2'-联吡啶. 通过1H NMR, GC-MS, 元素分析对产物进行了表征, 对催化反应进行了分析, 并且讨论了钯碳催化反应的机理.关键词 4-甲基吡啶; 4,4'-二甲基-2,2'-联吡啶; 钯碳Synthesis of 4,4'-Dimethyl-2,2'-bipyridine Catalyzed by Pd/CWU, Xiao-Hong* YANG, Zhan-Cheng QIN, Wei JIANG, Zhao-Hua(Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001)Abstract 4,4'-Dimethyl-2,2'-bipyridine was synthesized from 4-methylpyridine using Pd/C as a product was characterized by 1H NMR, GC-MS spectra and elemental analyses. The catalytic mechanismof Pd/C was 4-methylpyridine; 4,4'-dimethyl-2,2'-bipyridine; Pd/C2,2'-联吡啶类化合物作为重要的化工合成中间体,能与各种金属离子反应生成配合物[1,2], 广泛应用于检测微量金属离子存在和含量的指示剂、光敏化剂[3]和金属类催化剂的配体[4]等. 4,4'-二甲基-2,2'-联吡啶是2,2'-联吡啶类化合物中重要的一种, 是合成敏化剂所需的一种重要原料, 尤其在染料敏化太阳能电池用的敏化剂领域, 其是合成敏化效果最好的染料RuL2(SCN)2 (L=2,2'-联吡啶-4,4'-二甲酸)的配体原料[5]. 近年来以镍和钯为催化剂合成2,2'-联吡啶成为研究热点, 如Tiecco研究小组[6], Caubere等[7]用镍化合物作催化剂以卤代吡啶为原料偶联成功地得到联吡啶; Hasson 研究小组[8]用镍和钯等过渡金属络合物催化下以卤代吡啶为原料, 合成得到了联吡啶. 但是由于以上这些方法的原料是卤代吡啶, 所以不能直接合成4,4'-二甲基-2,2'-联吡啶. 首先需要由4-甲基吡啶经取代反应制得2-卤代吡啶, 这样就大大降低了合成4,4'-二甲基-2,2'-联吡啶的纯度和收率, 提高了生产成本, 所以这种方法是不可取的.钯碳作为一种重要的催化剂是将金属钯附着在碳基体上形成的, 它是一种高效的加氢催化剂, 同时在偶联反应中也有重要的应用[9,10]. 采用钯碳作催化剂合成4,4'-二甲基-2,2'-联吡啶反应温和、产物分离简便、纯度高, 钯碳可重复使用, 并且未参加反应的4-甲基吡啶也可以重复利用.因而, 我们提出了一种以4-甲基吡啶为原料、钯碳为催化剂, 经济、简便地制备高纯度4,4'-二甲基-2,2'-联吡啶的方法(Eq. 1).1 实验部分 仪器和试剂1H NMR数据在Bruker AV300 (300 MHz)上测得,溶剂为DMSO, 以TMS 为内标; 气相色谱-质谱数据在5973N GC/MSD (Agilent Technologies, USA)上测得; 元No. 2 吴晓宏等:钯碳催化法合成4,4'-二甲基-2,2'-联吡啶 261素分析数据是在Italian 生产的Thermo Finnigan Eager300 上测得. 4-甲基吡啶购于J&K Chemica, 钯碳催化剂购于上海久山化学品有限公司, 其它原料为国产分析纯试剂. 实验步骤取4-甲基吡啶, 蒸馏去除反应物中的色素和其它杂质; 将蒸馏后的4-甲基吡啶 g 和钯碳催化剂 g按50∶1(物质的量比)的比例混合, 加热回流3 d, 抽滤,滤液用旋转蒸发器减压蒸发, 得白色固体, 用乙酸乙酯对产品进行重结晶, 即得到纯度≥99%的4,4'-二甲基-2,2'-联吡啶晶体 g, 收率. . 175~176℃;1H NMR (DMSO, 300 MHz) δ: (s, 6H, 2CH3), (d, J= Hz, 2H, H-5, H-5'), (s, 2H, H-3, H-3'), (d, J= Hz, 2H, H-6, H-6'), 与文献[11]一致; MS m/z:184 [M+], 169 [M+-CH3], 92 [M/2]+, 77 [M/2-CH3]+(产品质谱与4,4'-二甲基-2,2'-联吡啶标准质谱图的相似度为96%, 证明产品为目标产物). Anal. calcd forC12H12N2: C , H , N ; found C , , N .旋转蒸发反应液得到4-甲基吡啶 g; 反应后的钯碳回收可重复使用.2 结果与讨论 钯碳催化机理吡啶类化合物一个重要的反应类型是邻位和对位的亲核取代反应. 这是因为吡啶环上N原子的吸电子效应, 使得邻位和对位的电荷密度降低, 通过ab initio 分子轨道(MO)方法计算的吡啶环中各原子的π 电子密度[12]如图1所示. H也是一种离去基团, 4-甲基吡啶N的对位已经被甲基占据, 甲基的推电子作用对其间位的活化远小于对其邻位的活化, 即甲基邻位C上的电子密度增大程度远大于甲基间位C上的电子密度增大程度. 因而在N吸电子和甲基推电子的共同作用下, N 邻位最容易发生亲核取代. 钯碳催化反应就是利用了N和甲基的作用, 发生了亲核取代反应.图1 吡啶中π-电子密度的分布Figure 1 The distribution of π-electron density of pyridine催化反应主要经历三个过程(Scheme 1): 第一步,钯催化剂插入邻位氢和吡啶环之间形成中间体R-Pd-H;第二步, 过渡金属化产生R-Pd-R中间体; 第三步, 发生还原消除反应生成偶联产物, 同时钯碳催化剂重复上述过程.Scheme 催化反应通过对反应机理的分析可知, 在反应过程中一种可能是Pd 催化剂进入4-甲基吡啶N 的邻位位置, 另外一种可能是Pd催化剂进入N的间位, 形成间位中间体, 进而反应生成3,3'-联吡啶或是2,3'-联吡啶, 如Scheme 2所示. 其中3,3'-联吡啶和2,3'-联吡啶与2,2'-联吡啶相比,配位能力和敏化效果相差较多, 为了得到高纯度的2,2'-联吡啶, 应避免副反应发生.Scheme 2通过以上对催化反应的分析可知, 在产物中可能存在3,3'-联吡啶或2,3'-联吡啶. 为了避免因重结晶而对产物成份产生影响, 对未经重结晶的初产品进行气相色谱分析, 其结果如图2 所示. 在色谱图上只出现了单峰, 且峰形尖锐, 没有出现旁峰和峰形变形, 所以产品中只存在4,4'-二甲基-2,2'-联吡啶. 同时4,4'-二甲基-2,2'-联吡啶中的氢存在于4种化学环境, 根据1H NMR 图谱显示的初产品信息, 不存在其它化学环境下的氢原子. 以上分262 有 机 化 学 Vol. 26, 2006析表明, 钯碳催化反应的产物主要是4,4'-二甲基-2,2'-联吡啶, 副产物3,3'-联吡啶和2,3'-联吡啶基本上不存在.图2 产品的气相色谱图Figure 2 GC diagram of the product这是由于4-甲基吡啶N的间位碳电子密度较高, 不利于亲核取代的发生; 而N 的邻位发生亲核取代反应,即催化过程的副反应基本上不存在, 只得到高纯度的4,4'-二甲基-2,2'-联吡啶.3 结论由于4-甲基吡啶N原子和甲基的共同作用, 使得N的邻位发生亲核取代反应, 因而以其为原料, 通过钯碳催化法可以合成高纯度的4,4'-二甲基-2,2'-联吡啶.References1 Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker,R.; Gorelsky, S. I.; Lever, A. B. P.; Grätzel, M. . Rev. 2000, 208, Hu, .; Wang, .; Zhou, .; Song, .; Li,.; Zheng, .; Xin, . Chin. J. Inorg. , 19, 215 (in Chinese).(胡月华, 王玉晓, 周建良, 宋瑛林, 李一志, 郑和根, 忻新泉, 无机化学学报, 2003, 19, 215.)3 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker,R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. . Chem. Soc. 1993, 115, Qian, .; Wang, C.; Tao, .; Huang, . Chin. . Chem. 2003, 23, 1264 (in Chinese).(钱延龙, 王晨, 陶晓春, 黄吉玲, 有机化学, 2003, 23,1264.)5 Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. . 1997, 91, Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Montanucci,M. Synthesis 1984, Fort, Y.; Becker, A.; Caubère, P. Tetrahedron 1994, 50, Hassan, J.; Penalva, V.; Lavenot, L.; Gozzi, C.; Lemaire, 1998, 54, Brase, S.; Waegell, B.; Meijere, A. Synthesis-Stuttgart1998, 2, Deng, W.; Liu, L.; Guo, . Chin. J. Org. Chem. 2004,24, 150 (in Chinese).(邓维, 刘磊, 郭庆祥, 有机化学, 2004, 24, 150.)11 Gerhard, S.; Herhta, W. S.; Pierre, P. K.; Havid, G. W. . Chem. Soc. 1997, 119, Del Bene, J. E. J. Am. Chem. Soc. 1979, 101, 6184.(Y0503141 LI, W. H.; LING, J.)