
农业经济统计分析论文
古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是农业经济统计分析论文,请参考!
摘要: 农业经济统计作为掌握农业生产一手数据资料的重要工作,为促进我国农业生产和农业经济的发展起到了重要作用。随着我国标准化数据统计水平的提升,其在农业经济统计方面带来的影响也愈加深远,信息化时代的到来需要提供足够的统计数据,同时也对数据统计的可靠性提出了更高的要求,但由于农业经济统计相比其他行业统计的特殊性,其标准化也存在一定的问题。值得我们进行探究。
关键词: 信息化时代 ;农业经济 ;数据统计 ;标准化
一、引言
农业作为我国重要的产业,是经济发展、社会安定、国家自立的基石。在农业经济发展过程中,农业经济数据统计工作就显得尤为重要。农业经济数据统计通过标准化指标的构建和标准化统计步骤的实施来完成的。在信息化时代,通过大数据的快速处理和信息数据化详细全面探究农业经济数据统计的标准化问题,了解当前农业经济数据统计面临的问题和其未来在标准化道路上的发展趋势,为农业经济发展提供可靠的分析性数据,是非常有必要的。
二、农业经济数据统计标准化现状
(一)农业经济数据统计体系精细化水平不高
对于任何行业的数据统计进行体系把握和控制时,必然涉及到统计标准的选择上来。对于农业经济数据统计而言也不例外,由于农业统计的发展处于从传统型向信息化转变的时代,其精细化水平仍有待提升。首先,在我国统计局公布的行业划分标准方面,农业属于农、林、牧、渔业中的一类,并包含农业服务业及其他农业服务业,但是在统计体系精细化管理过程中,对于复合行业即可能包含农林牧副渔业中一个行业或者多个行业的统计信息划分就不够清晰,可能会导致在农林牧副渔业中的统计信息存在交叉及数量关系方面的不准确,当前有关农业统计并没有对这复合行业进行详细划分和规定,可能会存在复合行业的统计信息缺失及错配的情况。其次,农业经济数据统计体系的建立是通过历史经验的'不断完善和修正而得,这使得农业经济数据统计体系中仍然保留着很多传统过时统计方式的影子,很多方式方法在实际工作中已经可以被先进的设备设施所替代,而传统的一些统计方法可能存在人工成本较高、准确性较低等缺点,不利于提升农业经济统计的准确性。如在实际工作中的农产品成本统计,就是采用的简单平均法统计小麦、玉米等农产品的各项直接和间接生产费用,即县级对各乡村调查户数据汇总,以各户的实际播种面积为权重进行加权平均;省市级采取简单算术平均办法来进行汇总。如果遇到调查户数据记录不准确,就容易造成信息失真,影响统计结果。
(二)农业经济统计数据从收集到传输缺乏专业性
由于农业经济作物种类繁多,不同种类的经济作物收集的不同也为农业经济统计带来了一定难度。当前,农业经济统计数据在收集环节到传输环节由于信息量大、种类多,农业经济统计面临着专业性较弱的问题。首先,在收集阶段,由于统计抽样的方式选择需要根据不同情况进行确定,由于种类过多,在统计抽样时,如何选择抽样方式仍是一个重要的问题。抽样方式是否准确直接影响到最终呈现出的数据的准确性和完整性。随机抽样方式在统计工作中是非常普遍、操作也是较为简单的一种方式,但是在农业统计时却并非特别容易进行。这和农业统计的特性有一定的关系,农业经济统计的一般是生鲜制品,对农产品进行定性和定量分类较难,在统计过程中随机的方式虽然可以减少工作量,但也容易使得统计数据的准确性下降,这不符合大数据时代对于大规模数据准确性的要求。其次,在数据传输阶段,过去由于信息化水平较低,统计数据一般由村开始层层上报,下层人员有关统计知识的水平较低,数据的传输多采用报送纸质资料、电话汇报等方式,这容易造成数据传输过程中的二次差错,同时这些差错也很难在后续的复核、处理过程中被发现,最终这些差错就会扩大数据的误差率,造成农业经济统计数据的可用性降低。我们在实际工作中常遇到此类问题,农业部农业综合统计中的农村经济基础资料卡片的统计就是由县级信息员报送,省市级信息员逐级汇总,层层上报,上报过程中,如果每一环节出现差错就会增加下一步的复核难度。
(三)农业经济数据标准化处理水平偏低,缺乏可信度
农业经济数据在经历过收集、传输之后必然面临着数据标准化的处理问题,只有进行有效数据处理和加工,数据才具有较高的可视化,才可以被加以有效利用,从而提升农业经济数据信息的可信度。但是当前,在农业经济数据标准化处理方面,我们仍然面临着处理水平不高的问题,最终导致农业经济数据的信息可信度欠缺。首先,部分农业经济数据的标准化处理仍然较为落后,统计分析手段仍然停留在简单的汇总、平均方面,未对数据的深层次关系进行挖掘和分析。简单的数据统计手段对于简单分析农业问题具有重要意义,但是随着精细化生产的不断发展,如何对现有农业经济统计数据加以利用,指导并促进未来农业生产便成为关键性难题。其次,统计部门也需要找寻不同类型的统计数据之间的关联性和因果原因,通过数量关系分析可以适时实现统计的最终目的预测未来事项发生的可能性和发生规律轨迹。当前有的统计部门的人员构成仍然较为传统,难以负担负责的统计数据分析和处理问题,也难以对未来趋势进行准确预判。这也使得统计数据虽然已经存在,但是能够用好、用对统计数据的人员不多,难以将一手数据转换为具有真正经济价值的统计数据信息。为解决农业经济信息统计标准化,陕西省农业调查总队几年前就建立了覆盖全省农村的统计调查网络,设立了一套科学的农村统计调查方法制度和组织管理制度,培养了一支高素质的农村统计调查队伍,建成了农村统计调查信息网络体系,调查手段日益现代化。实时了解掌握农业和农村经济的运行情况,分析判断形势,及时、准确反映和监控全省农村社会经济指标。
三、信息化时代农业经济数据统计标准化发展趋势
(一)农业经济统计制度与统计标准化要求的不断协调,促进指标体系精细化
当前,农业经济统计制度与统计标准化水平仍然不高,为了促进信息化时代农业经济数据统计标准化,需要加强农业经济统计制度与统计标准化要求的协调,促进指标体系的精细化和完善化。首先,农业经济统计制度不单指一项制度,而是指一套全面的从指标制定到指标实施、数据收集传输处理等全面的数据统计指导规范。统计标准化需要符合基本的统计制度规范要求,并利用现代化分析手段和方式对统计标准化指标进行确定以协调其与农业经济统计制度之间的关系。其次,过去的农业经济统计存在指标过于粗放化的问题,不利于统计数据的精细化收集和处理工作,因此对于农业经济统计过程中所涉及的指标应当进行细化和详细解释定义,确保指标体系精细化也为后期收集数据、处理数据扫除一定的障碍。除此之外,对于复合领域的经济统计问题要把握复合行业的经济实质,根据有关规定进行指标和实际的对应。对于不确定统计指标项目的内容,可以向有关统计单位进行咨询汇报以确定统计指标运用的合理性和有效性。
(二)加强农业经济统计数据收集的专业化,强化统计信息传输的数字化管理
想要改变当前农业经济统计数据收集专业化水平不高、数据收集缺乏专业性的问题,要不断加强农业经济统计数据收益的专业化能力,强化统计数据信息在传输过程中的数字化管理进程,提升信息化时代农业经济数据统计标准化发展质量。首先,在数据收集方面,需要确定准确的总体、样本等基本概念信息,在选择抽样方式时需要结合现实情况并进行误差可能性分析。通过选择合理的抽样方式既可以保证统计抽样的准确性和有效性,也可以节约成本、减少统计工作的成本。其次,在进行数据收集过程中,也需要加强对于基层统计人员的统计基础知识培训工作,提升统计专业水平确保统计数据的准确性和专业性。除此之外,农业经济统计数据的传输也需要逐步改变传统模式,利用新技术新手段新方法,提高数据传输的准确性和时效性。传统的纸质材料报送方法虽然仍具有一定意义,但是面对大规模大批量的统计数据,传统纸质材料报送方式既不利于数据的快速传输和处理,也不利于数据的保存和留档。在信息化时代,互联网和云内存的兴起使得电子信息化数据传输和存储成为趋势,在这种情况下,农业统计部门也应当与时俱进,通过不断完善数据传输系统,来保障数据传输和存储的安全性和准确性。
(三)提升农业经济统计数据标准化处理水平,全面提高统计信息可用性
提升农业经济统计数据的标准化处理水平,对于全面提高统计信息可用性起到了极其关键的作用。而农业经济统计数据标准化处理水平的提高,也是信息化时代农业经济数据统计标准化道路上的重要发展趋势。首先,在农业经济统计部门可以通过招聘一些具有较强经济学和农业复合学历背景的人才来从事农业经济统计工作,人才引进政策也会在短时间内提升从事农业经济统计数据标准化处理人员的知识水平和专业能力。而内部培训机制的完善也有利于提升现有职工的统计业务水平。内外部员工水平的整体提升会促进信息化时代农业经济数据统计的标准化处理水平。其次,通过完善农业经济统计数据标准化处理系统也可以通过不断磨合、系统升级来提升计算机时代的信息处理准确性。在未来,农业经济数据的处理不单单局限于简单的数理统计方面,还可以利用现有统计数据来对未来情势进行预测。通过多种模式来提升数据处理水平,可以全面提高统计信息的可用性。除此之外,在进行标准化数据处理过程中,也需要考虑前期统计数据收集、传输、存储过程中产生的误差,确保统计结果在可行的置信区间。通过以上的举措可以逐步提升信息化时代的农业经济统计数据的处理水平,最终实现统计结果的可用性和有效性,促进农业经济的精细化发展。
四、结语
随着我国科学经济水平的全方面发展,数据统计工作的作用也愈加凸显。对于信息化时代农业经济数据统计而言,标准化的统计体系、专业化的数据收集手段和方式、非传统的信息传输模式和标准化处理方法都对提升统计信息的可用性起到了重要作用。只有通过不断试错和吸取世界先进经验,才能最终总结出一套符合我国发展需求,适合我国基本现状的农业经济数据统计标准化体系和方法,为我国农业经济发展做出重要贡献。
参考文献:
[1]陈茹.我国乡镇(街道)图书馆统计标准化建设研究[J].图书馆工作与研究,2015(02).
[2]王萍.建立中国统计业务流程的构想[J].统计研究,2013(03).
[3]毛燕.四分位法和迭代法对数据分散的能力验证检测数据统计分析结果的比较[J].冶金分析,2016(05).
[4]肖应旺,杨军,张承忠,姚美银,杜瑛.统计监控建模数据预处理离群点检测算法[J].控制工程,2013(04).
在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为大家整理的关于统计模型论文的 范文 ,欢迎大家阅读参考!
统计套利模型的理论综述与应用分析
【摘要】统计套利模型是基于数量经济学和统计学建立起来的,在对历史数据分析的基础之上,估计相关变量的概率分布,并结合基本面数据对未来收益进行预测,发现套利机会进行交易。统计套利这种分析时间序列的统计学特性,使其具有很大的理论意义和实践意义。在实践方面广泛应用于个对冲基金获取收益,理论方面主要表现在资本有效性检验以及开放式基金评级,本文就统计套利的基本原理、交易策略、应用方向进行介绍。
【关键词】统计套利 成对交易 应用分析
一、统计套利模型的原理简介
统计套利模型是基于两个或两个以上具有较高相关性的股票或者其他证券,通过一定的方法验证股价波动在一段时间内保持这种良好的相关性,那么一旦两者之间出现了背离的走势,而且这种价格的背离在未来预计会得到纠正,从而可以产生套利机会。在统计套利实践中,当两者之间出现背离,那么可以买进表现价格被低估的、卖出价格高估的股票,在未来两者之间的价格背离得到纠正时,进行相反的平仓操作。统计套利原理得以实现的前提是均值回复,即存在均值区间(在实践中一般表现为资产价格的时间序列是平稳的,且其序列图波动在一定的范围之内),价格的背离是短期的,随着实践的推移,资产价格将会回复到它的均值区间。如果时间序列是平稳的,则可以构造统计套利交易的信号发现机制,该信号机制将会显示是否资产价格已经偏离了长期均值从而存在套利的机会 在某种意义上存在着共同点的两个证券(比如同行业的股票), 其市场价格之间存在着良好的相关性,价格往往表现为同向变化,从而价格的差值或价格的比值往往围绕着某一固定值进行波动。
二、统计套利模型交易策略与数据的处理
统计套利具 体操 作策略有很多,一般来说主要有成对/一篮子交易,多因素模型等,目前应用比较广泛的策略主要是成对交易策略。成对策略,通常也叫利差交易,即通过对同一行业的或者股价具有长期稳定均衡关系的股票的一个多头头寸和一个空头头寸进行匹配,使交易者维持对市场的中性头寸。这种策略比较适合主动管理的基金。
成对交易策略的实施主要有两个步骤:一是对股票对的选取。海通证券分析师周健在绝对收益策略研究―统计套利一文中指出,应当结合基本面与行业进行选股,这样才能保证策略收益,有效降低风险。比如银行,房地产,煤电行业等。理论上可以通过统计学中的聚类分析方法进行分类,然后在进行协整检验,这样的成功的几率会大一些。第二是对股票价格序列自身及相互之间的相关性进行检验。目前常用的就是协整理论以及随机游走模型。
运用协整理论判定股票价格序列存在的相关性,需要首先对股票价格序列进行平稳性检验,常用的检验方法是图示法和单位根检验法,图示法即对所选各个时间序列变量及一阶差分作时序图,从图中观察变量的时序图出现一定的趋势册可能是非平稳性序列,而经过一阶差分后的时序图表现出随机性,则序列可能是平稳的。但是图示法判断序列是否存在具有很大的主观性。理论上检验序列平稳性及阶输通过单位根检验来确定,单位根检验的方法很多,一般有DF,ADF检验和Phillips的非参数检验(PP检验)一般用的较多的方法是ADF检验。
检验后如果序列本身或者一阶差分后是平稳的,我们就可以对不同的股票序列进行协整检验,协整检验的方法主要有EG两步法,即首先对需要检验的变量进行普通的线性回归,得到一阶残差,再对残差序列进行单位根检验,如果存在单位根,那么变量是不具有协整关系的,如果不存在单位根,则序列是平稳的。EG检验比较适合两个序列之间的协整检验。除EG检验法之外,还有Johansen检验,Gregory hansan法,自回归滞后模型法等。其中johansen检验比较适合三个以上序列之间协整关系的检验。通过协整检验,可以判定股票价格序列之间的相关性,从而进行成对交易。
Christian L. Dunis和Gianluigi Giorgioni(2010)用高频数据代替日交易数据进行套利,并同时比较了具有协整关系的股票对和没有协整关系股票对进行套利的立即收益率,结果显示,股票间价格协整关系越高,进行统计套利的机会越多,潜在收益率也越高。
根据随机游走模型我们可以检验股票价格波动是否具有“记忆性”,也就是说是否存在可预测的成分。一般可以分为两种情况:短期可预测性分析及长期可预测性分析。在短期可预测性分析中,检验标准主要针对的是随机游走过程的第三种情况,即不相关增量的研究,可以采用的检验工具是自相关检验和方差比检验。在序列自相关检验中,常用到的统计量是自相关系数和鲍克斯-皮尔斯 Q统计量,当这两个统计量在一定的置信度下,显著大于其临界水平时,说明该序列自相关,也就是存在一定的可预测性。方差比检验遵循的事实是:随机游走的股价对数收益的方差随着时期线性增长,这些期间内增量是可以度量的。这样,在k期内计算的收益方差应该近似等于k倍的单期收益的方差,如果股价的波动是随机游走的,则方差比接近于1;当存在正的自相关时,方差比大于1;当存在负的自相关是,方差比小于1。进行长期可预测性分析,由于时间跨度较大的时候,采用方差比进行检验的作用不是很明显,所以可以采用R/S分析,用Hurst指数度量其长期可预测性,Hurst指数是通过下列方程的回归系数估计得到的:
Ln[(R/S)N]=C+H*LnN
R/S 是重标极差,N为观察次数,H为Hurst指数,C为常数。当H>时说,说明这些股票可能具有长期记忆性,但是还不能判定这个序列是随机游走或者是具有持续性的分形时间序列,还需要对其进行显著性检验。
无论是采用协整检验还是通过随机游走判断,其目的都是要找到一种短期或者长期内的一种均衡关系,这样我们的统计套利策略才能够得到有效的实施。
进行统计套利的数据一般是采用交易日收盘价数据,但是最近研究发现,采用高频数据(如5分钟,10分钟,15分钟,20分钟收盘价交易数据)市场中存在更多的统计套利机会。日交易数据我们选择前复权收盘价,而且如果两只股票价格价差比较大,需要先进性对数化处理。Christian L. Dunis和Gianluigi Giorgioni(2010)分别使用15分钟收盘价,20分钟收盘价,30分以及一个小时收盘价为样本进行统计套利分析,结果显示,使用高频数据进行统计套利所取得收益更高。而且海通证券金融分析师在绝对收益策略系列研究中,用沪深300指数为样本作为统计套利 配对 交易的标的股票池,使用高频数据计算累计收益率比使用日交易数据高将近5个百分点。
三、统计套利模型的应用的拓展―检验资本市场的有效性
Fama(1969)提出的有效市场假说,其经济含义是:市场能够对信息作出迅速合理的反应,使得市场价格能够充分反映所有可以获得的信息,从而使资产的价格不可用当前的信息进行预测,以至于任何人都无法持续地获得超额利润.通过检验统计套利机会存在与否就可以验证资本市场是有效的的,弱有效的,或者是无效的市场。徐玉莲(2005)通过运用统计套利对中国资本市场效率进行实证研究,首先得出结论:统计套利机会的存在与资本市场效率是不相容的。以此为理论依据,对中国股票市场中的价格惯性、价格反转及价值反转投资策略是否存在统计套利机会进行检验,结果发现我国股票市场尚未达到弱有效性。吴振翔,陈敏(2007)曾经利用这种方法对我国A股市场的弱有效性加以检验,采用惯性和反转两种投资策略发现我国A股若有效性不成立。另外我国学者吴振翔,魏先华等通过对Hogan的统计套利模型进行修正,提出了基于统计套利模型对开放式基金评级的方法。
四、结论
统计套利模型的应用目前主要表现在两个方面:1.作为一种有效的交易策略,进行套利。2.通过检测统计套利机会的存在,验证资本市场或者某个市场的有效性。由于统计套利策略的实施有赖于做空机制的建立,随着我股指期货和融资融券业务的推出和完善,相信在我国会有比较广泛的应用与发展。
参考文献
[1] . Burgess:A computational Methodolology for Modelling the Dynamics of statistical arbitrage, London business school,PhD Thesis,1999.
[2]方昊.统计套利的理论模式及应用分析―基于中国封闭式基金市场的检验.统计与决策,2005,6月(下).
[3]马理,卢烨婷.沪深 300 股指期货期现套利的可行性研究―基于统计套利模型的实证.财贸研究,2011,1.
[4]吴桥林.基于沪深 300 股指期货的套利策略研究[D].中国优秀硕士学位论文.2009.
[5]吴振翔,陈敏.中国股票市场弱有效性的统计套利检验[J].系统工程理论与实践.2007,2月.
关于半参统计模型的估计研究
【摘要】随着数据模型技术的迅速发展,现有的数据模型已经无法满足实践中遇到的一些测量问题,严重的限制了现代科学技术在数据模型上应用和发展,所以基于这种背景之下,学者们针对数据模型测量实验提出了新的理论和方法,并研制出了半参数模型数据应用。半参数模型数据是基于参数模型和非参数模型之上的一种新的测量数据模型,因此它具备参数模型和非参数模型很多共同点。本文将结合数据模型技术,对半参统计模型进行详细的探究与讨论。
【关键词】半参数模型 完善误差 测量值 纵向数据
本文以半参数模型为例,对参数、非参数分量的估计值和观测值等内容进行讨论,并运用三次样条函数插值法得出非参数分量的推估表达式。另外,为了解决纵向数据下半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。另外,本文初步讨论了平衡参数的选取问题,并充分说明了泛最小二乘估计方法以及相关结论,同时对半参数模型的迭代法进行了相关讨论和研究。
一、概论
在日常生活当中,人们所采用的参数数据模型构造相对简单,所以操作起来比较容易;但在测量数据的实际使用过程中存在着相关大的误差,例如在测量相对微小的物体,或者是对动态物体进行测量时。而建立半参数数据模型可以很好的解决和缓解这一问题:它不但能够消除或是降低测量中出现的误差,同时也不会将无法实现参数化的系统误差进行勾和。系统误差非常影响观测值的各种信息,如果能改善,就能使其实现更快、更及时、更准确的误差识别和提取过程;这样不仅可以提高参数估计的精确度,也对相关科学研究进行了有效补充。
举例来说,在模拟算例及坐标变换GPS定位重力测量等实际应用方面,体现了这种模型具有一定成功性及实用性;这主要是因为半参数数据模型同当前所使用的数据模型存在着一致性,可以很好的满足现在的实际需要。而新建立的半参数模型以及它的参数部分和非参数部分的估计,也可以解决一些污染数据的估计问题。这种半参数模型,不仅研究了纵向数据下其自身的t型估计,同时对一些含光滑项的半参数数据模型进行了详细的阐述。另外,基于对称和不对称这两种情况,可以在一个线性约束条件下对参数估计以及假设进行检验,这主要是因为对观测值产生影响的因素除了包含这个线性关系以外,还受到某种特定因素的干扰,所以不能将其归入误差行列。另外,基于自变量测量存在一定误差,经常会导致在计算过程汇总,丢失很多重要信息。
二、半参数回归模型及其估计方法
这种模型是由西方著名学者Stone在上世纪70年代所提出的,在80年代逐渐发展并成熟起来。目前,这种参数模型已经在医学以及生物学还有经济学等诸多领域中广泛使用开来。
半参数回归模型介于非参数回归模型和参数回归模型之间,其内容不仅囊括了线性部分,同时包含一些非参数部分,应该说这种模型成功的将两者的优点结合在一起。这种模型所涉及到的参数部分,主要是函数关系,也就是我们常说的对变量所呈现出来的大势走向进行有效把握和解释;而非参数部分则主要是值函数关系中不明确的那一部分,换句话就是对变量进行局部调整。因此,该模型能够很好的利用数据中所呈现出来的信息,这一点是参数回归模型还有非参数归回模型所无法比拟的优势,所以说半参数模型往往拥有更强、更准确的解释能力。
从其用途上来说,这种回归模型是当前经常使用的一种统计模型。其形式为:
三、纵向数据、线性函数和光滑性函数的作用
纵向数据其优点就是可以提供许多条件,从而引起人们的高度重视。当前纵向数据例子也非常多。但从其本质上讲,纵向数据其实是指对同一个个体,在不同时间以及不同地点之上,在重复观察之下所得到一种序列数据。但由于个体间都存在着一定的差别,从而导致在对纵向数据进行求方差时会出现一定偏差。在对纵向数据进行观察时,其观察值是相对独立的,因此其特点就是可以能够将截然不同两种数据和时间序列有效的结合在一起。即可以分析出来在个体上随着时间变化而发生的趋势,同时又能看出总体的变化形势。在当前很多纵向数据的研究中,不仅保留了其优点,并在此基础之上进行发展,实现了纵向数据中的局部线性拟合。这主要是人们希望可以建立输出变量和协变量以及时间效应的关系。可由于时间效应相对比较复杂,所以很难进行参数化的建模。
另外,虽然线性模型的估计已经取得大量的成果,但半参数模型估计至今为止还是空白页。线性模型的估计不仅仅是为了解决秩亏或病态的问题,还能在百病态的矩阵时,提供了处理线性、非线性及半参数模型等方法。首先,对观测条件较为接近的两个观测数据作为对照,可以削弱非参数的影响。从而将半参数模型变成线性模型,然后,按线性模型处理,得到参数的估计。而多数的情况下其线性系数将随着另一个变量而变化,但是这种线性系数随着时间的变化而变化,根本求不出在同一个模型中,所有时间段上的样本,亦很难使用一个或几个实函数来进行相关描述。在对测量数据处理时,如果将它看作为随机变量,往往只能达到估计的作用,要想在经典的线性模型中引入另一个变量的非线性函数,即模型中含有本质的非线性部分,就必须使用半参数线性模型。
另外就是指由各个部分组成的形态,研究对象是非线性系统中产生的不光滑和不可微的几何形体,对应的定量参数是维数,分形上统计模型的研究是当前国际非线性研究的重大前沿课题之一。因此,第一种途径是将非参数分量参数化的估计方法,也称之为参数化估计法,是关于半参数模型的早期工作,就是对函数空间附施加一定的限制,主要指光滑性。一些研究者认为半参数模型中的非参数分量也是非线性的,而且在大多数情形下所表现出来的往往是不光滑和不可微的。所以同样的数据,同样的检验方法,也可以使用立方光滑样条函数来研究半参数模型。
四、线性模型的泛最小二乘法与最小二乘法的抗差
(一)最小二乘法出现于18世纪末期
在当时科学研究中常常提出这样的问题:怎样从多个未知参数观测值集合中求出参数的最佳估值。尽管当时对于整体误差的范数,泛最小二乘法不如最小二乘法,但是当时使用最多的还是最小二乘法,其目的也就是为了估计参数。最小二乘法,在经过一段时间的研究和应用之后,逐步发展成为一整套比较完善的理论体系。现阶段不仅可以清楚地知道数据所服从的模型,同时在纵向数据半参数建模中,辅助以迭代加权法。这对补偿最小二乘法对非参数分量估计是非常有效,而且只要观测值很精确,那么该法对非参数分量估计更为可靠。例如在物理大地测量时,很早就使用用最小二乘配置法,并得到重力异常最佳估计值。不过在使用补偿最小二乘法来研究重力异常时,我们还应在兼顾着整体误差比较小的同时,考虑参数估计量的真实性。并在比较了迭代加权偏样条的基础上,研究最小二乘法在当前使用过程中存在的一些不足。应该说,该方法只强调了整体误差要实现最小,而忽略了对参数分量估计时出现的误差。所以在实际操作过程中,需要特别注意。
(二)半参模型在GPS定位中的应用和差分
半参模型在GPS相位观测中,其系统误差是影响高精度定位的主要因素,由于在解算之前模型存在一定误差,所以需及时观测误差中的粗差。GPS使用中,通过广播卫星来计算目标点在实际地理坐标系中具体坐标。这样就可以在操作过程中,发现并恢复整周未知数,由于观测值在卫星和观测站之间,是通过求双差来削弱或者是减少对卫星和接收机等系统误差的影响,因此难于用参数表达。但是在平差计算中,差分法虽然可以将观测方程的数目明显减少,但由于种种原因,依然无法取得令人满意的结果。但是如果选择使用半参数模型中的参数来表达系统误差,则能得到较好的效果。这主要是因为半参数模型是一种广义的线性回归模型,对于有着光滑项的半参数模型,在既定附加的条件之下,能够提供一个线性函数的估计方法,从而将测值中的粗差消除掉。
另外这种方法除了在GPS测量中使用之外,还可应用于光波测距仪以及变形监测等一些参数模型当中。在重力测量中的应用在很多情形下,尤其是数学界的理论研究,我们总是假定S是随机变量实际上,这种假设是合理的,近几年,我们对这种线性模型的研究取得了一些不错的成果,而且因其形式相对简洁,又有较高适用性,所以这种模型在诸多领域中发挥着重要作用。
通过模拟的算例及坐标变换GPS定位重力测量等实际应用,说明了该法的成功性及实用性,从理论上说明了流行的自然样条估计方法,其实质是补偿最小二乘方法的特例,在今后将会有广阔的发展空间。另外 文章 中提到的分形理论的研究对象应是非线性系统中产生的不光滑和不可微的几何形体,而且分形已经在断裂力学、地震学等中有着广泛的应用,因此应被推广使用到研究半参数模型中来,不仅能够更及时,更加准确的进行误差的识别和提取,同时可以提高参数估计的精确度,是对当前半参数模型研究的有力补充。
五、 总结
文章所讲的半参数模型包括了参数、非参数分量的估计值和观测值等内容,并且用了三次样条函数插值法得到了非参数分量的推估表达式。另外,为了解决纵向数据前提下,半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。同时介绍了最小二乘估计法。另外初步讨论了平衡参数的选取问题,还充分说明了泛最小二乘估计方法以及有关结论。在对半参数模型的迭代法进行了相关讨论和研究的基础之上,为迭代法提供了详细的理论说明,为实际应用提供了理论依据。
参考文献
[1]胡宏昌.误差为AR(1)情形的半参数回归模型拟极大似然估计的存在性[J].湖北师范学院学报(自然科学版),2009(03).
[2]钱伟民,李静茹.纵向污染数据半参数回归模型中的强相合估计[J].同济大学学报(自然科学版),2009(08).
[3]樊明智,王芬玲,郭辉.纵向数据半参数回归模型的最小二乘局部线性估计[J].数理统计与管理,2009(02).
[4]崔恒建,王强.变系数结构关系EV模型的参数估计[J].北京师范大学学报(自然科学版).2005(06).
[5]钱伟民,柴根象.纵向数据混合效应模型的统计分析[J].数学年刊A辑(中文版).2009(04)
[6]孙孝前,尤进红.纵向数据半参数建模中的迭代加权偏样条最小二乘估计[J].中国科学(A辑:数学),2009(05).
[7]张三国,陈希孺.EV多项式模型的估计[J].中国科学(A辑),2009(10).
[8]任哲,陈明华.污染数据回归分析中参数的最小一乘估计[J].应用概率统计,2009(03).
[9]张三国,陈希孺.有重复观测时EV模型修正极大似然估计的相合性[J].中国科学(A辑).2009(06).
[10]崔恒建,李勇,秦怀振.非线性半参数EV四归模型的估计理论[J].科学通报,2009(23).
[11]罗中明.响应变量随机缺失下变系数模型的统计推断[D].中南大学,2011.
[12]刘超男.两参数指数威布尔分布的参数Bayes估计及可靠性分析[D].中南大学,2008.
[13]郭艳.湖南省税收收入预测模型及其实证检验与经济分析[D].中南大学,2009.
[14]桑红芳.几类分布的参数估计的损失函数和风险函数的Bayes推断[D].中南大学,2009.
[15]朱琳.服从几类可靠性分布的无失效数据的bayes分析[D].中南大学,2009.
[16]黄芙蓉.指数族非线性模型和具有AR(1)误差线性模型的统计分析[D].南京理工大学,2009.
猜你喜欢:
1. 统计学分析论文
2. 统计方面论文优秀范文参考
3. 统计优秀论文范文
4. 统计学的论文参考范例
统计学参考文献格式
统计学是一门有关统计数据的科学。它研究如何搜集、整理资料和进行数量分析,推断的一门方法论科学。是统计工作经验的总结和概括。以下是我整理的统计学参考文献格式,欢迎阅读。
一、统计学参考文献的类型
参考文献(即引文出处)的类型以单字母方式标识,具体如下:
M――专著 C――论文集 N――报纸文章
J――期刊文章 D――学位论文 R――报告
对于不属于上述的文献类型,采用字母“Z”标识。
对于英文参考文献,还应注意以下两点:
1.作者姓名采用“姓在前名在后”原则,具体格式是: 姓,名字的首字母. 如: Malcolm Richard Cowley 应为:Cowley .,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris F. & .
2.书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly。
二、统计学参考文献格式及举例
1.期刊类
【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号):起止页码.
【举例】
[1] 王海粟.浅议会计信息披露模式[J].财政研究,2004,21(1):56-58.
[2] 夏鲁惠.高等学校毕业论文教学情况调研报告[J].高等理科教育,2004(1):46-52.
[3] Heider . The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, (3): 62-67.
2.专著类
【格式】[序号]作者.书名[M].出版地:出版社,出版年份:起止页码.
【举例】
[4] 葛家澍,林志军.现代西方财务会计理论[M].厦门:厦门大学出版社,2001:42.
[5]Gill English Literature [M]. London: acmil,1985: 42-45.
3.报纸类
【格式】[序号]作者.篇名[N].报纸名,出版日期(版次).
【举例】
[6] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27(3).
[7] French W. Between Silences: A Voice from China[N]. Atlantic Weekly,1987-8-15(33).
4.论文集
【格式】[序号]作者.篇名[C].出版地:出版者,出版年份:起止页码.
【举例】
[8] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979:12-17.
[9] Spivak G. “Can the Subaltern Speak?”[A]. In & L. Grossberg(eds.). Victory in Limbo: Imigism [C].Urbana: University of Illinois Press, 1988, .
[10] Almarza . Student foreign language teacher’s knowledge growth [A]. In and (eds.). Teacher Learning in Language Teaching [C]. New York: Cambridge University Press. 1996. .
5.学位论文
【格式】[序号]作者.篇名[D].出版地:保存者,出版年份:起止页码.
【举例】
[11] 张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所, 1983:1-7.
6.研究报告
【格式】[序号]作者.篇名[R].出版地:出版者,出版年份:起止页码.
【举例】
[12] 冯西桥.核反应堆压力管道与压力容器的LBB分析[R].北京:清华大学核能技术设计研究院, 1997:9-10.
7.条例
【格式】[序号]颁布单位.条例名称.发布日期
【举例】
[15] 中华人民共和国科学技术委员会.科学技术期刊管理办法[Z].1991-06-05.
8.译著
【格式】[序号]原著作者. 书名[M].译者,译.出版地:出版社,出版年份:起止页码.
【拓展内容】
摘要: 随着我国经济的发展,统计思想及统计工作在我国经济发展中的地位越来越重要。本文就统计思想体系及其在统计工作的指导意义进行了讨论。
关键词: 统计思想;统计工作;影响
在当前我国统计工作中,认清统计的真谛、领会统计思想,对统计本身来讲,有利于提高统计水平和统计工作者的整体素质;对外界而言,有利于树立别的工作及别的理论不能取代和比拟的统计权威。
一、统计思想简述
统计思想是指统计工作中应树立的世界观和方法论。哲学上世界观和方法论是基础,是人们行动的指南,也是统计工作中应遵守的指南。这里统计思想是指统计不同于别的学科所特有的世界观和方法论,也是树立统计权威的基础。
统计的总体思想使统计始终要站在研究对象的整体角度来看问题,形成了大量观察法和大数定律等一系列认识规律。所谓“站得高,看得远”、“把握大局”也是这种思想的体现。这要求统计工作者在工作中,做到万变不离其宗。因为,总体资料是由作为承担者的个体身上搜集后综合而来的,而个体资料千差万别,有些界限还不好判断。这时就需要站在总体的角度,看哪些符合总体要求,哪些不符合总体要求,避免“旁观者清,当局者迷”,避免偏离统计本身的功能。
二、统计思想的几个方面
1.均值思想。
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。它告诉我们统计认识问题是从其发展的一般规律来看,侧重点不在总规模或个体,体现了数量观和推断观。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.变异思想。
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。如果各单位之间不存在差异,也就不需要做统计,如果各单位之间的差异是按已知条件事先可以推定,也就不需要用统计方法。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。可以说,均值与方差这两个概念分别起到“隐异显同”和“知同察异”的作用。平均与变异都是对同类事物特征的抽象和宏观度量。
3.估计思想。
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质,样本才能代表总体,但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
4.相关思想。
马克思主义哲学认为,事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,我们所研究的事物总体是在同质性的基础上形成。总体中的个体之间、这一总体与另一总体之间是相互关联的。相关概念表现的就是事物之间的关系。
5.拟合思想。
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势,趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
6.思想。
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
三、统计工作
统计工作应包括统计设计、统计调查、统计整理、统计分析、统计信息应用和发布等D 个环节;而作为统计工作成果的统计资料显然应包括调查的原始资料,整理的系统资料和分析的深度加工资料;统计学研究统计工作的全过程,同时也研究统计资料的可行性、可信性和可用性。3个涵义之间存在着严密的辨证关系。
统计工作的5个环节中,设计是基础,说统计学是方法论的科学,最主要的就体现在统计设计上;统计工作能否达到目的,关键也在于设计。若把统计工作看作是产品生产过程,统计设计就相当于产品设计,统计调查就是施工,统计整理就是组装,统计分析就是质量检验与分析,统计信息应用与发布就是广告宣传与销售。每一环节都具有很强的技术性,但设计和分析是技术性、理论性最强的工作,统计的特殊功能也主要体现在这两个环节上。统计设计实际上是告诉操作者怎样去调查,怎样去整理;分析与信息发布就是告诉用户统计可以达到什么目的.,而这些目的是别的专业达不到的。发达国家为什么对统计如此重视,联合国为什么专门设立统计委员会,关键也体现在这两个方面。
今天的社会,统计已相当发达,无论是资料搜集方法研究,还是统计规律研究,其目的都是为了认识我们所研究的对象,或者说认识统计总体。统计工作者从调查开始到整理出对外服务的系统资料,这一过程使人们对统计总体的外貌有比较清楚的认识,如果我们能再从数字后面找出内部特征,就能总结出现象发展的规律性,结合社会经济运行的法则,就可以提出管理社会经济的有效建议。统计指标体系是一个完整的科学系统,由统计指标所核定的数量是有科学涵义的,指标之间是有严密分工的。因此,统计分析是别的分析所不能比拟的。
四、统计工作如何改进
统计学虽然在20 世纪已经取得了无可比拟的伟大成就, 但还没有成熟为一个具有完整稳固基础的知识领域, 因为就统计学的研究对象而言, 其所能涉及到的范围是如此之大、我们所面临的未知是如此之多而不得不需要不断夯实和拓展其学科基础, 以保证统计学定量认知的职能与功能。所以, 从人类不断增加和提高的对统计的要求出发,我们要更强调多学科的交叉与相融, 要不断汲取其他相关学科例如数学、复杂系统科学、混沌学、仿真学、计算机学等的最新发展成果来补充、拓展统计学的基础, 否则,统计学的发展就会缺乏生命力, 就会裹足不前。
在市场经济时期,全面系统的统计工作却需要具有一定统计业务基础、专业技术和相对固定的统计人员来完成。相对稳定的统计队伍,可以积累经验,为企业管理做出更大、更快捷的贡献。如果责任心不强、上进心不足、业务素质低下,势必贻误正常工作。统计人员要善于学习,不断提高自己的业务素质,才能胜任本职工作。同时,企业单位,行业系统,尤其是企业集团需要具有责任心、富有时代感,并有开拓创新精神与较高业务素质,能带领同事一道学习与工作的统计负责人。
在这种情况下,统计人员应自尊,要自信、自强,方能自立。统计人员务必刻苦学习,努力工作争取创新,多出成果。与此同时,企业领导和有关部门,也应为统计人员创造机会,组织他们学习统计知识及相关的业务知识、法律制度和微机知识,支持他们参加统计工作会议,鼓励统计人员参加业务水平和技术职称的考试,引导他们积极提供统计资料,主动参与企业管理,对工作积极并有较大贡献或较快进步者,应该及时给予表彰。
随着社会的发展,统计学在我国的地位越来越高,也越来越受重视,统计思想体系也越来越完善,相信不久的将来我国的统计工作将会不入更高的一层台阶。
参考文献:
〔1〕思想探讨[J]. 合作经济与科技, 2006,(04)
〔2〕庞有贵.统计工作及统计思想 [J]. 科技情报开发与经济,2004,(03)
〔3〕唐源鸿.统计学的普及及应用[j].经营管理者,2010,(01)
81 浏览 3 回答
109 浏览 3 回答
308 浏览 2 回答
123 浏览 3 回答
106 浏览 3 回答
246 浏览 2 回答
87 浏览 3 回答
260 浏览 2 回答
91 浏览 3 回答
162 浏览 4 回答
325 浏览 3 回答
326 浏览 3 回答
123 浏览 3 回答
220 浏览 5 回答
187 浏览 4 回答