摘要Abstract 近年来,随着人们生活水平的提高,对汽车乘坐舒适性的要求也越来越高。汽车行驶的平顺性和操纵的稳定性已经逐渐成为其在现代市场竞争中夺取优势的一项非常重要的性能指标。本文首先通过建立汽车悬架系统的七自由度整体模型图,运用结构动力学和振动知识推导出系统在正弦激励下的拉格朗日方程,并简化为振动微分方程形式,通过MATLAB编制优化程序,求出系统的复特征值和在特定参数下的响应变化图形。然后,简述现代汽车悬架系统的各种控制方法,模拟仿真出系统在不同的刚度和阻尼下输出响应的图形,通过比较分析,为半主动悬架系统的减振器的阻尼和弹性元件的刚度控制提供根据。最后,得出本文的结论。即,汽车悬架的动力响应和控制分析与刚度和阻尼的变化之间的紧密联系。 In recent years, with the improvement of people's living standard, it is higher and higher to take the requirement for comfortableness to the car. Whom car go getting smooth-going and stability that handle become their capture one important performance index very of advantage among modern market competition gradually already. This text, through setting up whole model picture of degree of freedom seven that the car hung a system at first, use structural dynamics and vibration knowledge to derive the system out to encourage Lagrangian equation under in the sine, simplify it for the vibration differential equation form, work out the procedure of optimizing through MATLAB, ask out systematic replying characteristic value and response under the particular parameter and changing the figure. Then sketch Hyundai Motor hang sets of various of system control method, simulation emulation produce system output the figure responded under different rigidity and damping, through comparative analysis,hang sets of damping and rigidity of components elastic of shock absorbers of system control offer to half voluntarily according to. Finally, draw the conclusion herein. ., the car power of hanging the shelf responds and controls the close connection between analysis and change of rigidity and damping.关键词:汽车悬架;响应;控制分析Keyword: The car hangs the shelf; Response; Control and analyze