双因素方差分析(Double factor variance analysis)有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。这里介绍无交互作用的双因素方差分析。
在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。例如饮料销售,除了关心饮料品牌之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因。采用不同的销售策略, 使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位;在市场占有率低的地区,进一步扩大宣传,让更多的消费者了解、接受该产品。若把饮料的品牌看作影响销售量的因素A,饮料的销售地区则是影响因素B。对因素A和因素B同时进行分析,就属于双因素方差分析的内容,双因素方差分析是对影响因素进行检验,究竟是一个因素在起作用,还是两个因素都起作用,或是两个因素的`影响都不显著。
双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方差的一致性。
双因素方差分析的方法多种多样,比如EXCEL,matlab,spss等等;具体实现以及实现后的表达的意思还需要大家共同来完成。