[1]付新梅 戴树桂 张余.离子液体与传统有机溶剂萃取性能的比较研究[J].分析化学,2006,34(5):598~[2]赵乐军 戴树桂 吴彩霞 闫澍旺 曹永华 刘润.不同添加剂改善脱水污泥填埋特性的正交试验研究[J].给水排水,2006,32(1):11~[3]汪磊 吴颖虹 孙红文 戴树桂.黄河兰州段悬浮颗粒物对菲的吸附行为研究[J].环境科学与技术,2006,29(4):1~[4]刘春光 金相灿 孙凌 钟远 孙红文 戴树桂 庄源益.水体pH和曝气方式对藻类生长的影响[J].环境污染与防治,2006,28(3):161~[5]刘春光 金相灿 孙凌 孙红文 朱琳 于洋 戴树桂 庄源益.不同氮源和曝气方式对淡水藻类生长的影响[J].环境科学,2006,27(1):101~[6]刘春光 孙红文 朱琳 李健 牛倩 庄源益 戴树桂.两种无机盐形成的盐度对淡水藻类生长的影响[J].环境科学学报,2006,26(1):157~[7]高敏苓 戴树桂.土壤中有机污染物生物可利用性研究进展[J].华中农业大学学报,2006,25(3):334~[8]高敏苓 戴树桂 马永民 张平.氮肥对绿麦隆在土壤中吸附-解吸作用的影响[J].农业环境科学学报,2006,25(3):694~[9]付新梅 戴树桂 傅学起.液膜萃取技术在环境样品前处理中的应用[J].分析测试学报,2006,25(2):126~[10]张彦峰 张清敏 高志贤 戴树桂.用于测定多环芳烃的酶联免疫吸附分析法的研究[J].农业环境科学学报,2006,25(2):537~[11]孙凌 金相灿 钟远 张冬梅 朱琳 戴树桂 庄源益.不同氮磷比条件下浮游藻类群落变化[J].应用生态学报,2006,17(7):1218~[12]王平 徐建 钟霞 戴树桂 孙红文.半透膜被动采样装置(SPMDs)对PAHs和壬基酚类的静态富集[J].生态环境,2006,15(3):475~[13]徐建 钟霞 王平 汪磊 董军兴 戴树桂.利用半透膜被动采样技术监测黄河兰州段典型有机污染物[J].生态环境,2006,15(3):481~[14]高敏苓 戴树桂 张平.绿麦隆、阿特拉津单一与复合污染对蚯蚓的毒性效应研究[J].生态环境,2006,15(3):525~[15]高志贤 王艳 房彦军 周焕英 王涛 王红勇 王升启 戴树桂.小分子阿特拉津和罂粟碱检测的免疫芯片技术研究[J].分析化学,2005,33(4):455~[16]张丽 戴树桂.多介质环境逸度模型研究进展[J].环境科学与技术,2005,28(1):97~[17]刘春光 金相灿 邱金泉 孙凌 戴树桂 庄源益.光照与磷的交互作用对两种淡水藻类生长的影响[J].中国环境科学,2005,25(1):32~[18]赵文岩 韩萌 戴树桂.离子液体1-甲基-3-己基咪唑六氟磷酸用于水中多环芳烃萃取的研究[J].环境化学,2005,24(4):467~[19]徐建 戴树桂.表面活性剂SDBS对甘薯吸收涕灭威的影响[J].农业环境科学学报,2005,24(3):490~[20]侯绍刚 徐建 汪磊 孙红文 戴树桂 刘昕宇.黄河(兰州段)水环境中壬基酚及壬基酚聚氧乙烯醚污染的初步研究[J].环境化学,2005,24(3):250~[21]刘春光 金相灿 孙凌 钟远 戴树桂 庄源益.pH值对淡水藻类生长和种类变化的影响[J].农业环境科学学报,2005,24(2):294~[22]赵乐军 戴树桂 闫澍旺 曹永华 刘润.掺添加剂改善脱水污泥填埋特性研究[J].中国给水排水,2005,21(2):47~[23]郭炜锋 戴树桂.水环境多环芳烃源解析研究进展[J].环境污染治理技术与设备,2005,6(10):8~[24]刘宪华 宋文华 戴树桂.呋喃丹水解酶的分离纯化及性质[J].上海交通大学学报,2004,38(5):834~[25]刘春光 金相灿 孙凌 邱金泉 王雯 戴树桂 庄源益.城市小型人工湖围隔中生源要素和藻类的时空分布[J].环境科学学报,2004,24(6):1039~[26]徐建 袁旭 戴树桂.涕灭威在土壤溶液中的降解研究[J].农业环境科学学报,2004,23(6):1168~[27]赵乐军 戴树桂 辜显华.污泥填埋技术应用进展[J].中国给水排水,2004,20(4):27~[28]赵文岩 戴树桂 韩萌.绿色化学研究与生态环境保护[J].生态环境,2004,13(3):425~[29]刘宪华 冯炘 宋文华 戴树桂.假单胞菌AEBL3对呋喃丹污染土壤的生物修复[J].南开大学学报:自然科学版,2003,36(4):63~[30]钱芸 戴树桂 刘广良 葛卫东 庄源益.硝酸镧对铜绿微囊藻生长特性的影响[J].中国环境科学,2003,23(1):7~[31]刘宪华 宋文华 戴树桂.呋喃丹降解菌AEBL3的筛选及特性研究[J].上海环境科学,2003,22(11):743~[32]金朝晖 曹骥赟 李铁龙 周欣 戴树桂 王玲艳.农药涕灭威在土壤中的移动性及地下水影响研究[J].农业环境科学学报,2003,22(4):480~[33]冯炘 刘宪华 宋文华 戴树桂.假单胞菌AEBL3对土壤中呋喃丹的生物降解[J].城市环境与城市生态,2003,16(6):144~[34]李阳 张清敏 戴树桂.涕灭威及其复合污染对斑马鱼胚胎DNA的影响[J].应用生态学报,2003,14(6):982~[35]戴树桂 王玉秋 等.三丁基锡在水—脂质体间的分配行为[J].环境科学,2002,23(4):97~[36]戴树桂 承雪琨 等.SDBS及腐殖酸对涕灭威及其氧化产物水解的影响[J].中国环境科学,2002,22(3):193~[37]刘广良 戴树桂 等.毛细管柱气相色谱—火焰光度检测器分析环境样品中的递灭威[J].环境化学,2002,21(5):517~[38]戴树桂 徐建 等.农药涕灭威在甘薯中的消解特性[J].农业环境保护,2002,21(3):248~[39]戴树桂 孙玉宝 等.涕灭威污染体系研究现场土壤生态系统表征[J].城市环境与城市生态,2002,15(3):1~[40]孙咏梅 戴树桂 等.大气混杂污染物诱导8—羟基脱氧鸟苷的形成及机理[J].城市环境与城市生态,2002,15(1):23~[41]徐建 戴树桂 等.土壤和地下水中污染物迁移模型研究进展[J].土壤与环境,2002,11(3):299~[42]钱芸 戴树桂 等.富营养化淡水水体中微囊藻毒素的研究进展[J].环境污染治理技术与设备,2002,3(8):13~[43]袭著革 戴树桂 等.典型醛类污染物与细胞DNA分子的结合作用[J].环境科学,2001,22(1):19~[44]孙咏梅 戴树桂 等.DNA加合物8-氢基脱氧鸟苷特性研究[J].上海环境科学,2001,20(9):409~[45]孙咏梅 戴树桂 等.香烟烟雾成分分析及其对DNA生物氧化能力研究[J].环境与健康杂志,2001,18(4):203~[46]戴树桂 刘广良 等.土壤多介质环境污染研究进展[J].土壤与环境,2001,10(1):1~[47]戴树桂 张东梅.固相萃取技术预富集环境水样中邻苯二甲酸酯[J].环境科学,2000,21(2):66~[48]董亮 戴树桂.憎水性污染物在表面活性剂溶剂中的增溶动力学[J].环境科学,2000,21(1):27~[49]刘广良 戴树桂.农药涕灭威在土壤中的不可逆吸附行为[J].环境科学学报,2000,20(5):597~[50]袭著革 戴树桂.DNA链断裂作为醛类污染物接触标志物的研究[J].中国环境科学,2000,20(5):441~[51]戴树桂 温妥江.偶氮染料脱色优势菌的特性及基因定位初步研究[J].南开大学学报:自然科学版,1999,32(1):113~[52]戴树桂 董亮.表面活性剂在土壤颗粒物上的吸附行为[J].中国环境科学,1999,19(5):392~[53]戴树桂 董亮.表面活性剂对受污染环境修复作用研究进展[J].上海环境科学,1999,18(9):420~[54]袭著革 戴树桂.醛类化合物—DNA加合物研究进展[J].上海环境科学,1999,18(6):286~[55]戴树桂 陈慰国.湖泊水环境中湖流及其风效应研究[J].南开大学学报:自然科学版,1998,31(3):22~[56]张林 戴树桂.室内空气中芳香烃的测定与污染源模拟[J].环境科学,1998,19(5):63~[57]张智超 戴树桂.海河河口水和新港港湾水中α—六六六对映本选择性降解及α,β,γ, …[J].中国环境科学,1998,18(3):197~[58]戴树桂 刘小琴.污染土壤的植物修复技术进展[J].上海环境科学,1998,17(9):25~[59]戴树桂 宋文华.有机污染物生物降解途径控制反应的预测与优势菌选择模型的建立[J].环境化学,1998,17(6):547~[60]戴树桂 宋文华.有机化合物动态定量结构—生物降解关系(QSBR)模型研究[J].环境化学,1998,17(2):105~[61]戴树桂 宋文华.偶氮染料定量结构—生物降解关系(QSBR)研究[J].环境化学,1998,17(2):115~[62]戴树桂 袭著革.DNA加合物研究进展[J].中国公共卫生,1998,14(11):697~[63]戴树桂 张林.论城市室内环境中气溶胶污染问题[J].城市环境与城市生态,1998,11(1):55~[64]戴树桂 张进.有机化合物动态定量结构—生物降解关系模型研究[J].环境科学进展,1998,6(1):1~[65]戴树桂 张林.室内空气中苯系物的测定与模拟研究[J].中国环境科学,1997,17(6):485~[66]戴树桂 孙红文.河口及藻类对三丁基锡的降解作用[J].中国环境科学,1997,17(2):146~[67]戴树桂 赖城明.有机污染物生物降解途径的理论预测[J].环境化学,1997,16(5):399~[68]戴树桂 陈晓军.生物降解途径的理论预测与QSBR研究[J].环境化学,1997,16(5):403~[69]郁建栓 戴树桂.天然湖水表面微层砷,磷酸盐,悬浮颗粒物及藻类富集现象的研究[J].环境化学,1997,16(4):359~[70]张林 戴树桂.城市室内环境多环芳烃污染与源的相关性[J].城市环境与城市生态,1997,10(4):43~[71]庄源益 戴树桂.新型絮凝剂凝集水中染料的研究[J].城市环境与城市生态,1997,10(2):1~[72]戴树桂 庄源益.两种假单孢菌中二氯酚降解酶活性及其定域研究[J].环境科学学报,1996,16(2):173~[73]戴树桂 宋文华.偶氮染料结构与其生物降解性关系研究进展[J].环境科学进展,1996,4(6):1~[74]戴树桂.环境分析领域的主攻方向[J].国际学术动态,1996,(5):7~
解地下水流问题的数值方法
随着现代应用数学以及计算机技术的发展和广泛应用,数值模拟逐渐成为研究地下水运动规律、定量评价地下水资源以及模拟一些水文地质过程发生发展的主要手段。其研究范畴,由单纯研究地下水系统与自然环境系统之间的相互关系,扩大到研究与社会经济系统的相互关系;其研究内容,涉及饱和带、非饱和带和饱和-非饱和带[1]。
在计算机上利用数值法可以模拟各种复杂的水文地质条件,虽然用这种方式求出的数值解仍然是近似值,但仍能满足人们生产研究的要求[2]。和其他方法比较,数值模拟有很多优点,主要有[3]:①模拟在计算机上进行,不需要像物理模拟那样建立专门的一套设备;②有广泛的适用性,可以用于水量计算、水位预报以及地面沉降等的计算,各种复杂的含水层、边界条件、水流情况都能模拟出来;③修改算法、修改模型比较方便;④可以程序化,只要编好软件,对不同的具体问题只要按要求整理数据就能上机计算,并立即得到相应的结果。它的不足之处是不如物理模拟来得逼真、直观,且计算工作量大。
目前,解地下水流问题的数值方法有很多,但最通用的还是有限差分法(Finite Difference Method)和有限元法(Finite Element Method)。这两种方法的根本区别在于有限差分法是建立在用差商近似表示导数的基础上的,而有限元法是建立在直接求函数的近似解基础上的。除了这两种方法以外,还有特征线法(Method of Characteristics)、边界元法(Boundary Element Method)等,在此不再详述。
20世纪50年代有限差分法主要用于石油流动领域的计算,60年代中期拓宽了应用领域,用于解地下水流问题。有限差分法有许多优点:①对于简单问题(如均质各向同性含水层中的一维、二维稳定流问题)的数学表达式和计算过程比较直观、易懂;②有相应高效的算法;③对一般的地下水流问题来说解的精度比较高;④有广泛使用的商用软件,如MODFLOW、PLASM等。需要注意的是,对某些自然边界条件,有限差分法必须进行特殊处理,灵活性一般说来相对要差一些。因此,标准的有限差分法在近似不规则边界上不如有限元法方便(积分有限差分法能和有限元法一样处理不规则边界),对内部边界如断层带的处理以及模拟点源(汇)、渗出面和移动着的地下水面等,有限差分法也不如有限元法好。
有限元法于20世纪60年代后期引入地下水计算中。这种方法的优点有:①程序的统一性。有限元法对各种地下水流和溶质、热量运移问题,计算过程基本相同,程序编写比较方便,很多例子表明从解某一类问题的程序转换为解另一类问题的程序比较简单;②对不规则边界或曲线边界、各向异性和非均质含水层的处理比较方便;③单元大小比较随意,同一计算区内可以视需要采用多种单元形状和多种插值函数以适应水头、浓度等变量的变化或精度要求;④水流问题、溶质运移问题的解精度一般比较高。有限元法虽然有上述这些优点,也有一些缺陷,主要是局部区域质量不守恒,有时会影响计算结果。另一个是和有限差分法等共有的缺陷,即渗流速度、流量只能在先求出水头后,再由Darcy定律算出渗流速度,渗流速度乘以过水断面面积再得到流量[3]。这样做误差大,算不准,至今尚未彻底解决。2004年薛禹群等[4]、YE 等[5]又把数学上新出现的多尺度有限元法引入地下水领域,并得到初步应用,它不仅可以大量减少单元数,还能提高计算精度。因此,多尺度有限元是一种很有应用前景的方法。
地下水数值模拟软件
随着计算机技术的快速发展,使得复杂含水层系统中的地下水流运动及溶质运移的数值模拟变为可能。近年来,在人机交互、计算机图形学和科学可视化等技术的推动下,地下水数值模拟软件在质量上有了较大的发展和提高[6]。其中较有影响地位的有Visual MODFLOW、FEFLOW、GMS。
(1)Visual MODFLOW:由加拿大Waterloo水文地质公司在MODFLOW的基础上开发研制的Visual MODFLOW软件,是目前较流行且被各国同行一致认可的三维地下水流和溶质运移模拟评价的标准可视化专业软件系统[7]。该软件主要包括MODFLOW(水流模拟)、Modpath(平面和剖面流线示踪分析)、MT3D(溶质运移模拟)和Zone Budget(水量均衡计算)四大模块。界面设计包括三大彼此联系但又相对独立的模块,即前处理模块、计算模块和后处理模块。Visual MODFLOW以其求解方法的简单适用、适应范围的广泛及可视化功能的强大成为较有影响的地下水数值模拟软件,其使用范围越来越大。然而实践证明,它往往并不适合某些复杂的地质条件,如不饱和流、密度变化的水流(海水入侵)、热对流等棘手的问题。
(2)FEFLOW:FEFLOW是由德国水资源规划与系统研究所(WASY)历时20多年的研究,开发出来的地下水流动及物质迁移模拟软件系统[8]。软件问世以来,在理论研究和实际问题的处理上,经过了不断的发展、修改、扩充、提高,日趋完善。从20世纪70年代末至今,FEFLOW 经过了大量的测试和检验,成功地解决了一系列与地下水有关的实质性问题,如判断污染物迁移途径、追溯污染物的来源、海水入侵等,是功能较齐全的三维地下水模拟分析软件。
(3)GMS:GMS是由Brigham Young大学环境模拟研究实验室开发的较先进的、基于概念模型的地下水系统模拟软件[9]。GMS是唯一支持Tins、solids、钻孔数据、2D 或者3D地质统计学的系统,它也包括2D和3D的有限单元和有限差分模型。此外,它还封装了基于MODFLOW的水流模型、溶质运移模型MODPATH、MT3D和RT3D,以及基于有限单元法的FEMWATER模型等。其主要优点体现于:在前处理过程中,GMS软件可以采用MODFLOW 等模块的输入数据,同时MODFLOW 等模块的计算结果又可以直接导入GMS中进行后处理,实现计算结果的可视化。
一、模拟试验研究的目的
大量的调查评价结果表明,许多城市垃圾多数堆放或填埋于地下资源补给区、城市周围的其他近郊区的旧河道及其两岸、荒地、巨大的采石(砂、土)坑中,在垃圾场地底部均未采取任何防渗措施,垃圾直接堆放在含水层之上或直接与地下含水层相连,垃圾分解后产生的淋滤液与外来水分(包括大气降水、地表水、地下水入渗)所形成的内流水,污染了深层或浅层地下水,成为城市特别是平原地区城市地下含水层的主要污染源之一。
那么,垃圾污染物在各种含水层结构的深层或浅层地下水的运移速度有多大?污染影响范围有多大?这是污染物在地下含水层中迁移模拟试验研究的目的。
根据我们对许多城市垃圾场对地下水污染的调查,发现北京垃圾场对地下水的污染在含水层类型方面十分具有代表性。北京垃圾场主要对下列三种类型的含水层产生污染。一种为以北京市平原区沙子营垃圾场为代表的以砂为主的含水层;第二种以清河营垃圾场为代表的北京市平原区旧(古)河道砂夹砂砾石层结构的含水层系统;第三种以北京市北天堂垃圾场为代表平原区地下水的补给区永定河冲洪积扇顶部砂卵砾石含水层系统。选择这三种类型的含水层结构系统研究垃圾淋滤液污染组分在含水层中的迁移,具有十分重要的理论研究意义和实际应用价值。
由于地下水的污染受许多因素影响,而现阶段的工作无法区分垃圾对地下水污染的影响程度,因此,选用地下水水质模型来预测垃圾淋滤液在含水层中的分布。由于所依托项目任务书要求、调查年限、经费等的限制,我们在野外选择了沙子营垃圾场、清河营垃圾场作了弥散试验,并选择理想条件下污染物迁移方程的解析解,来对垃圾污染物在地下含水层中迁移进行试验与模拟研究,这是在目前条件下最有效的方法。
下面是试验模拟研究的过程及讨论。
二、弥散试验及数据处理
(一)沙子营垃圾场弥散试验过程与结果
弥散试验场位于垃圾填埋场西南角,距其约20m处。地层岩性上部为厚的砂质粘土,中部为厚的中细砂,下部则为2m厚的中粗砂,地下水位埋深约,为潜水含水层,含水层岩性主要为中粗砂,厚度。
试验前施工了示踪剂投放孔(主孔)和观测孔,主孔孔深为,观1、观2、观3和观4孔深分别为、、和,四个观测孔距注入孔的距离分别为、、和,方位分别为25°、340°、290°和210°(图7-6)。
图7-6 垃圾场弥散试验孔位平面图
通过实测试验场地地下水流向为323°,地下水化学类型为HCO3-Ca·Mg型,Cl-的浓度为。试验时间为2000年9~10月份,试验时周围农田没有实施灌溉,避免了地下水流场受人为因素的干扰,示踪剂选用NaCl。试验时对观测孔和投放孔进行了定时、定深取样、现场分析化验,在观2和观3孔得到了较为满意的观测结果(见图7-7)。
利用观测资料,采用下面的方法计算弥散系数。根据示踪剂瞬时投放的数学模型:
图7-7 沙子营弥散试验观测结果及曲线匹配图
城市垃圾地质环境影响调查评价方法
式中:c为投入示踪剂引起地下水浓度变化值(mg/L);v为地下水实际流速(m/d);n为含水层有效孔隙度;m为注入示踪剂质量(mg);DT、DL为纵、横向弥散系数(m2/d)。
城市垃圾地质环境影响调查评价方法
忽略分子扩散,并设DL=αL·v、DT=αT·v,则(1)式的解为:
设
城市垃圾地质环境影响调查评价方法
则:
城市垃圾地质环境影响调查评价方法
式中:
城市垃圾地质环境影响调查评价方法
利用式(7-12)~(7-14)可计算出不同a值情况下的cR随tR的变化值,从而可绘出cR-R曲线簇,即得标准量板曲线。
根据(5)式变换整理得:
城市垃圾地质环境影响调查评价方法
综合上述,如两观测孔至少有一个不在流向上时,把所得的实测曲线与标准曲线进行匹配,可得出相应的a值,应用(7-15)式即可求出纵向弥散度αT和横向弥散度αL。
经计算得,αL=;αT=。
(二)清河营垃圾场弥散试验过程与结果
弥散试验场位于垃圾填埋场南侧,距垃圾场约50m。地层岩性上部为的粉质粘土。中部为的细砂夹卵石,之下有一厚的砂质粘土,最下部为的中粗砂夹卵石,地下水位埋深约,为潜水含水层,含水层岩性主要为中粗砂夹卵石,厚度约。
试验前施工了示踪剂投放孔(主孔)和观测孔,主孔孔深为,观1、观2和观3孔深分别为、和,三个观测孔与注入孔的距离分别为、和,分别位于主孔的90°、135°和177°(图7-8)。
图7-8 清河营垃圾场弥散试验孔位平面图
试验前,实测试验场地地下水流向为105°,Cl-的浓度为。弥散试验完成时间在2000年10月份完成。示踪剂选用NaCl。试验时对观测孔及投放孔进行了定时、定深取样、现场分析化验,在观1和观2孔得到了较为满意的观测结果(图7-9)。
经计算,清河营垃圾填埋场地的纵向弥散度αL=,横向弥散度αT=。
(三)地下水实际流速的计算
地下水实际流速可根据注入孔的浓度衰减值用下式(7-16)求得:
城市垃圾地质环境影响调查评价方法
式中:d为注入孔直径(m); n为有效孔隙度;α为综合影响因子,一般取~;Δt为自投入示踪剂后的时间(d); C0为浓度本底值(mg/L); C1为投入示踪剂后注入孔浓度(mg/L); C2为Δt时间后注入孔浓度(mg/L)。
图7-9 清河营弥散试验观测结果及曲线匹配图
两个弥散试验的注入孔直径均为,在此,将含水层的给水度视为有效孔隙度。根据以往研究成果,沙子营和清河营两地含水层的给水度分别取和;根据试验时的实测资料,浓度本底值分别为和,取a=(以往研究的经验值),注入孔投入NaCl后,其中Cl-浓度衰减过程见表7-10,利用(10)式计算的实际流速也列于表中,据此求得的地下水实际流速分别为:沙子营v=()/3=;清河营v=()/3=。
表7-10 注入孔Cl-浓度变化和地下水流速
三、沙子营垃圾场污染物在含水层中的迁移
(一)沙子营垃圾场特征及含水层结构
位于朝阳区沙子营南1100m,西距黄港乡公路南北向约300m,场地南北长约250m,东西宽约150m,垃圾约4m厚,场地北部为水塘,西南方向是围墙,东侧为一条形植树护路带,场地表面有大量白色塑料袋,堆放生活垃圾。北部水塘水呈灰黑色。垃圾已堆放三年,调查时已将坑堆满,停止堆放。
该垃圾场地位于冲洪积扇下部平原区,含水层岩性为交错分布的砂层,层次多,颗粒细,渗透性差,此区地下水主要接受大气降水,灌溉回归水等入渗补给,以垂直循环为主,水平迳流条件和富水性均差。图7-10给出沙子营垃圾堆放场地层结构示意图。
据以往调查资料,北京市潜水水化学组分氯化物的背景值范围为~。
图7-10 沙子营垃圾堆放场与地层结构关系图
(二)垃圾淋滤液在含水层中分布范围的计算
1.方法概述
由于该区的水交替是以垂直循环为主,但受区域水循环控制,还存在一定的区域水平方向的地下水流动,将其假设为一维稳定均匀流场中的溶质迁移问题。并作如下假设:
(1)含水层是由均匀多孔介质组成的潜水层;
(2)潜水层在平面上无限延伸、厚度不变,地下水沿正x方向的平面均匀流动、实际渗透流速v稳定不变;
(3)排入潜水层的废水量与区域地下水流量相比可被忽略;
(4)在污染物进入含水层前,整个含水层范围内的污染物浓度为零;
(5)降雨通过垃圾体入渗形成的淋滤液假设为连续的,淋滤液进入潜水层是通过整个含水层厚度完成的,并且在垂向上迅速混合。
(6)将垃圾体假设为一点污染源,且在注入点以速率Q连续向含水层中注入污染物浓度为C0的水流。
取垃圾开始堆放处为坐标原点,无限平面为x Oy平面,则上述问题可用下面的数学模型来描述:
式中:C为污染物在地下水中的浓度,M/L3;
城市垃圾地质环境影响调查评价方法
式中:Dk和DT分别为纵向弥散系数和横向弥散系数,L2/T; v为地下水的实际渗透流速,L/T;λ为污染物质的衰减系数,T-1; Rd为迟滞因子,无量纲;m为单位体积潜水层内污染物的质量进入速率,M/L3T; n为有效孔隙度,无量纲;Q为单位潜水层厚度上的流体体积进入流率,L3/TL; C0为排入含水层中垃圾淋滤液中的污染物浓度,M/L3;δ(x,y)为Darac变数增量函数。
城市垃圾地质环境影响调查评价方法
上述数学模型的解析解,Wilson和Miller(1978)已经给出,即式中的W(u,r/B)为汉克尔的越流井函数。对于我们的问题在已给出的汉克尔井函数中很难找到所需要的值,采用如下近似公式对该井函数进行计算。即
城市垃圾地质环境影响调查评价方法
式中:
城市垃圾地质环境影响调查评价方法
当0≤y≤3时:余误差函数
城市垃圾地质环境影响调查评价方法
其中的a1,a2,…,a6为常数。
而当y>3时:
城市垃圾地质环境影响调查评价方法
当y<0时,用上述二公式和下述关系式来计算:
城市垃圾地质环境影响调查评价方法
2.指示因子的选择
为了确定污染晕存在的最大范围,选择在地下水中保持相对稳定的,随地下水迁移过程中化学变化小,含水介质对其吸附、解吸作用弱,很少发生离子交换吸附作用的Cl-进行研究。因此,上述公式中的迟滞因子Rd为1,衰减系数λ为零。
3.参数
(1)垃圾淋滤液的水量。填埋场在采取防渗与场外防洪等阻水措施的条件下,其垃圾淋滤液的日产量可用下式计算:
q=C·I·A·10-3
式中:q为垃圾淋滤液量(m3/d);I为降雨强度(mm); A为垃圾场集雨面积(m2); C为渗出系数,,一般取。
计算时,将垃圾场集雨面积处理为随堆放时间的延长而以一均匀速度增加。据调查资料,取垃圾场集雨面积的增加速率为。降雨强度取北京市22年每月的平均降雨量,考虑含水层的厚度,表7-11为计算的单位潜水层厚度上的流体体积进入流率。
表7-11 计算时间内垃圾淋滤液进入含水层中的量
(2)淋滤液中污染物Cl-的浓度。表7-12为采集淋滤液的时间和淋滤液中Cl-浓度。选用四次采集样品的平均值作为C0,而且在计算时间内其值不变。
表7-12 垃圾淋滤液中污染物含量
(3)淋滤液进入地下水时间的估算。根据我们沿地下水流动方向上布设的观测井的观测资料(图7-11),与垃圾已经堆放的时间综合分析认为:垃圾淋滤液到达地下水的时间为两年。
图7-11 距垃圾场不同距离处地下水中Cl-浓度
所需的其他参数前面都已经给出。
4.计算结果与讨论
利用(7-21)式,按三个月的时间递增,计算出xOy平面上地下水中Cl-的浓度分布范围如图7-12所示。污染晕在含水层中的分布以沿地下水流动方向为主,在垂直地下水流方向上仅以弥散带的形式存在,其最大宽度在计算的一个水文年内为5m,而在地下水流方向上,溶质在对流和弥散的影响下,其最大值为,是垂向弥散带的17倍。随着距注入点距离的增大,地下水流方向上的弥散带宽度与对流带相比越来越小(表7-13),因此,随着垃圾堆放时间的延长,可忽略不计由弥散引起的污染,而用纯对流引起的水质变化来预测垃圾淋滤液在地下水中的分布范围。
图7-12 沙子营垃圾场堆放后淋滤液在含水层中不同时间的分布范围
表7-13 沙子营垃圾场弥散带占对流带的比例
上述计算是在理想化的条件下进行的。在实际应用时需对其进行校正。一方面应考虑将垃圾体作为点污染源带来的误差,另一方面,还应考虑含水层中已经存在的污染物对输入污染物运移的阻碍作用。在我们所研究的地区,区域地下水中的Cl-只有~,可不考虑其对输入污染物运移的影响。将垃圾体作为点污染源带来的误差,校正时可考虑在上述计算结果的基础上,叠加垃圾体的分布范围作为淋滤液在地下水中的最大影响范围,即垃圾淋滤液在含水层中的分布范围应从垃圾堆放体边缘开始,沿地下水流动方向,在一个水文年内最远能达。
在北京地区像沙子营这样的浅层地下水含水层(又叫上层滞水)分布比较广泛。在这样的含水层中,一个水文年能迁移,是穿透力强,生物降解作用弱,基本不与其他物质发生生物化学反应的Cl-离子的速度,代表了水中污染物的最大迁移速度。实际上,含水介质中的垃圾污染物的迁移速度要比其小的多。
四、清河营垃圾场污染物在含水层中的迁移
该场地位于朝阳区清河营村北500m,是生活垃圾与建筑垃圾混合堆放,面积约300×150m2,呈长方形。场地西南角为堆填垃圾未满剩余水坑,水坑中水呈暗粉红色,不透明(混浊),堆填垃圾顶面高出水面约,调查时堆放一年,并已停止堆放。场地除北面外,其余都是耕地。
该场地位于冲洪积扇下部平原区,含水层岩性不均一,由多层砂砾石及少数砂层组成。图7-13为清河营垃圾堆放场地层结构示意图。
图7-13 清河营垃圾堆放场与地层结构关系图
(二)垃圾淋滤液在含水层中分布范围的计算
所用的方法与第二节相同,下面给出计算时所需的参数。
1.参数
根据调查结果,取垃圾场集雨面积的增加速率为41m2/d。表7-14为计算的单位潜水层厚度上的流体体积进入流量。
淋滤液中污染物Cl-的浓度取实测值(2000年4月20日样品)。
表7-14 计算时间内垃圾淋滤液进入含水层中的量
2.计算结果
利用前面(7-21)式,计算出xOy平面上不同时期内地下水中Cl-的浓度分布范围如图7-14所示。同样,污染晕在含水层中的分布仍以沿地下水流动方向为:
图7-14 清河营垃圾场的淋滤液在含水层中不同时间的分布范围
在垂直地下水流方向上仅以弥散带的形式存在,其最大宽度在计算的八个月时仅,而在地下水流方向上,污染质在对流和弥散的影响下,八个月时达,迁移速度是,是垂向弥散带的63倍。随着距注入点距离的增大,地下水流方向上的弥散带宽度与对流带相比越来越小(表7-15),因此,随着时间的延长,可忽略不计由弥散引起的污染,因而可近似用纯对流引起的水质运移迁范围来预测垃圾淋滤液在地下水中的分布范围。
表7-15 清河营垃圾场弥散带占对流带的比例
五、北天堂垃圾场污染物在含水层中的迁移(一)北天堂垃圾场的特征及含水层结构
垃圾场位于永定河东岸,占地约10×104m2,容积150×104m3,垃圾填埋面积×104m2,平均填埋深度8m。该垃圾场于1987年开始启用,至调查时使用约13年。垃圾填埋在挖砂坑内,挖砂时将地表盖层破坏、去除,表层约4m厚的粉细砂已不存在,之下为砂卵砾石,垃圾直接堆填在其中。
该垃圾场位于永定河冲洪积扇上游地段,据以往调查结果,包气带及含水层岩性为单一的砂卵石组成,其富水条件和渗透性能好,渗透系数K=173m/d。这些地带的水力坡度在2‰,在这些松散层底部为不透水基岩分布。由于以往对该层地下水过量开采,加之永定河常年无水,使得该层含水层逐渐在疏干,水位曾大幅下降。目前,该层含水层已不作为开采层。但由于其处于区域含水层的上游地带,其水质对区域地下水质具有影响。
地下水动态类型属入渗型,地下水位变幅较小,其埋深在丰、枯季分别为(2000年10月)和(2000年3月),年变幅约1m。地下水补给与区域地下水补给一致,主要以自西北向东南的侧向径流和大气降水入渗为主。
据以往调查资料显示,永定河冲洪积扇中上部,Cl-的背景值=~。
图7-15 北天堂垃圾堆放场地层结构示意图
根据上述,北天堂垃圾场与含水层间存在如图7-15所示的关系。
(二)北天堂垃圾污染物在含水层中范围的确定
根据该层水位的实测资料,可将地下水流场作为稳定流场考虑,含水层颗粒粗,可假设降雨的当年降雨就流过垃圾成为淋滤液补给地下水,影响地下水质。因此,该问题仍可用前面第二节的方法予以解决。
前面的计算结果已经表明,随着淋滤液在含水层中迁移时间的延长,淋滤液在含水层中沿地下水流动方向的距离也增加,而且在一段时间后,淋滤液的弥散带与对流范围相对可忽略不计,淋滤液对地下水的影响范围可近似地用对流的结果来圈定。而地下水的达西流速v=173×2‰=,则地下水的实际流速v实=v/n=。
由于垃圾堆放时间长,其淋滤液引起地下水质变化范围的圈定用水流质点的运移距离来代替,即沿地下水流方向的距离=v实×时间。因此,堆放13年的北天堂垃圾场在其地下水流动方向的下游地带距垃圾边缘距离为5361m。当然,这只是用达西定律计算的地下水的流动距离或影响范围。实际上,地下水中的污染物在迁移扩散的过程中,还要发生生物、化学反应,发生物理吸附和生物降解等,实际的扩散距离要小的多。事实上该垃圾场在13年的时间里,垃圾污染物的影响范围实际才650m。
六、结论
垃圾淋滤液在含水层中的迁移受许多因素的综合影响,用地下水质模型可很好地将这些因素间的关系定量描述。由于垃圾淋滤液污染物在含水层中要与含水介质发生吸附、降解等作用,使得垃圾淋滤液污染物在含水层中所影响的距离或范围比像氯离子这样的穿透能力较强的范围要小,因此,选择氯离子作为垃圾淋滤液的污染指示剂来作现场弥散试验、并以其结果参与模拟计算垃圾淋滤液污染物在垃圾场地地下含水层弥散、扩散和迁移,根据此结果来计算预测的场地地下含水层弥散、扩散和迁移距离或范围是最大值。
通过对代表不同类型的含水层介质中垃圾污染物迁移、扩散的计算,得到在不同的含水结构系统中,淋滤液的迁移距离不同,从而初步掌握了北京不同类型的含水层介质中垃圾污染的范围。
(1)沙子营的地下水污染物迁移、弥散试验和模拟计算表明,对于北京市平原区以砂为主的含水层,特别是那些浅层砂为主的含水层,堆放垃圾后淋滤液进入含水层中的迁移距离在一个水文年内可达,纵向弥散带宽度占对流带,横向弥散宽度仅为5m。
(2)北京平原区有相当多的垃圾场直接堆放或填埋在旧河道里及其附近,如清河、凉水河旧(古)河道及其两岸。清河营垃圾场的地下水污染物迁移、弥散试验和模拟计算表明,对于北京市平原区旧(古)河道带砂夹砂砾石结构的含水层堆放垃圾后,淋滤液在含水层中的分布范围在淋滤液进入含水层后八个月时达,即年,纵向弥散带的宽度占对流带的比例为,横向弥散宽度仅为。
(3)北京北天堂垃圾场代表了位于附图3(北京市平原区垃圾场地的地质环境效应分区评价图)中C区的垃圾场。该区为地下水补给区的永定河冲洪积扇顶部砂卵砾石含水层分布地区,地下水防护能力极差,入渗条件、迁移条件好。北天堂垃圾场污染物在地下水中对流迁移计算结果表明,由于地下含水介质渗透性好,对流速度较快,垃圾堆放时间长,淋滤液中的污染质迁移的最远可近似地用对流带范围圈定,即北天堂垃圾场在堆放的13年时间内在垃圾下游地带达5361m。但实际评价结果是垃圾污染物的影响范围实际才650m。
216 浏览 3 回答
253 浏览 3 回答
353 浏览 4 回答
108 浏览 5 回答
279 浏览 2 回答
342 浏览 3 回答
133 浏览 3 回答
156 浏览 4 回答
146 浏览 4 回答
133 浏览 4 回答
349 浏览 3 回答
82 浏览 3 回答
97 浏览 4 回答
245 浏览 3 回答
347 浏览 5 回答