![](/lib_static/assets/images/user_logo/603f952676da2c22063acd9dbeb6484a11b669a0.jpg)
文秀网论文预期目标范文2020-11-28 13:04:51论文预期目标怎么写1.使读者能够在阅读该论文之前对全文的内容、结构有一个大致的了解,以便读者决定是读还是不读,是精读还是略读等。2.为读者选读论文中的某个分论点时提供方便。长篇论文,除中心论点外,还有许多分论点。当读者需要进一步了解某个分论点时,就可以依靠目录而节省时间。目录一般放置在论文正文的前面,因而是论文的导读图。要使目录真正起到导读图的作用,必须注意:1.准确。目录必须与全文的纲目相一致。也就是说,本文的标题、分标题与目录存在着一一对应的关系。2.清楚无误。目录应逐一标注该行目录在正文中的页码。标注页码必须清楚无误。3.完整。目录既然是论文的导读图,因而必然要求具有完整性。也就是要求文章的各项内容,都应在目录中反映出来,不得遗漏。论文中的预期成果形式和预期目标怎么写题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要应运而生的。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既便于开题报告按目填写,避免遗漏;又便于评审者一目了然,把握要点。开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题。开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法。开题报告是由选题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告的内容大致如下:课题名称、承担单位、课题负责人、起止年限、报名提纲。报名提纲包括:(1)课题的目的、意义、国内外研究概况和有关文献资料的主要观点与结论;(2)研究对象、研究内容、各项有关指标、主要研究方法(包括是否已进行试验性研究);(3)大致的进度安排;(4)准备工作的情况和目前已具备的条件(包括人员、仪器、设备等);(5)尚需增添的主要设备和仪器(用途、名称、规格、型号、数量、价格等);(6)经费概算;(7)预期研究结果;(8)承担单位和主要协作单位、及人员分工等。同行评议,着重是从选题的依据、意义和技术可行性上做出判断。即从科学技术本身为决策提供必要的依据。开题报告的格式(通用)由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题说清楚,应包含两个部分:总述、提纲。1 总述开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法、必要的数据等等。2 提纲开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。3 参考文献开题报告中应包括相关参考文献的目录4 要求开题报告应有封面页,总页数应不少于4页。版面格式应符合以下规定。开 题 报 告学 生:一、 选题意义1、 理论意义2、 现实意义二、 论文综述1、 理论的渊源及演进过程2、 国外有关研究的综述3、 国内研究的综述4、 本人对以上综述的评价三、 论文提纲前言、一、1、2、3、··· ···二、1、2、3、··· ···三、1、2、3、结论四、论文写作进度安排毕业论文开题报告提纲一、开题报告封面:论文题目、系别、专业、年级、姓名、导师二、目的意义和国内外研究概况三、论文的理论依据、研究方法、研究内容四、研究条件和可能存在的问题五、预期的结果六、进度安排毕业论文开题报告中设计的方法及预期目标应该写什么啊根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找: 毕业论文网: 分类很细 栏目很多 毕业论文: 开题报告: 实习论文: 写作指导: 。大学生未来规划范文大学生职业规划范文 我的大学职业生涯规划总论:不少人都曾经这样问过自己:“人生之路到底该如何去走?”记得一位哲人这样说过:“走好每一步,这就是你的人生。”是啊,人生之路说长也长,因为它是你一生意义的诠释;人生之路说短也短,因为你生活过的每一天都是你的人生。每个人都在设计自己的人生,都在实现自己的梦想。对于我们大学生来说,职业生涯目标的设定,是职业生涯规划的核心。一个人事业的成败,很大程度上取决于有无正确适当的目标。没有目标如同驶入大海的孤舟,四野茫茫,没有方向,不知道自己走向何方。只有树立了目标,才能明确奋斗方向,犹如海洋中的灯塔,引导你避开险礁暗石,走向成功。一. 意义及自我分析有了成功的目标。明确自己人生的大目标,对把握好目标有直接的促进作用。认真策划人生每一步。有道是:"凡事预则立,不预则废",千真万确。对自己做的或将要做的事没有任何准备,就是在为失败做准备。(1)学历目标:大专毕业(以后有必要了 还有要"充电"。(2)经济目标:年薪25万(3) 方 向:企业高级管理人员 建立自己的公司(生化)二.社会环境规划和职业分析(三年规划)1、社会一般环境中国政治稳定,经济持续发展。在全球经济一体化环境中的重要角色。经济发展有强劲的势头,加入wto后,会有大批的外国企业进入中国市场,中国的企业也将走出国门。2、管理职业特殊社会环境由于中国的管理科学发展较晚,管理知识大部分源于国外,中国的企业管理还有许多不完善的地方。中国急需管理人才,尤其是经过系统培训的高级管理人才。因此企业管理职业市场广阔。三.大学三年规划:1.职业目标:(2006-2008年)(1)职务目标:先从学生会干,勤工俭学,逐步了解企业对大学生的要求。(2)能力目标:掌握专业知识,了解其他方面对自己有用的 知识。(3)经济目标:在校期间兼职,年收入1万元左右;一年级:为试探期和定向期:首先要适应由高中生到大学生的角色转变,重新确定自己的学习目标和要求;其次,要开始接触职业和职业生涯的概念,特别要重点了解自己未来所希望从事的职业或与自己所学专业对口的职业,进行初步的职业生涯设计;熟悉环境,建立新的人际关系,提高交际沟通能力,在职业认识方面可以向高年级学生尤其是大四的毕业生询问就业情况;积极参加各种各样的社团活动,增加交流技巧;在学习方面,要巩固扎实专业基础知识,加强英语.计算机能力的培养,掌握现代职业者所应具备的最基本技能;要初步了解职业,提高人际沟通能力。大一学习任务不重,应多参加学校活动,增加交流技巧,但不要盲目地参加。在定向期,应考虑未来是否深造或就业,通过参加学生会或社团等组织,锻炼自己的能力,同时检验自己的知识技能;提高自己的责任感,主动性和受挫能力,并开始有选择地辅修其他专业的知识来填充自己。二年级:为准备期.加强专业知识学习的同时,考取与目标职业有关的职业资格证书或相应地通过职业技能鉴定。因为临近毕业,所以目标应锁定在提高求职技能、搜集公司信息上。参加与专业有关的暑期工作,和同学交流求职工作心得体会,学习写简历、求职信等求职技巧,了解搜集就业信息的渠道,并确定自己是否要升本或考研。要积极锻炼自己得到独立解决问题的能力和创造性;积极常识并加入校友网络,了解往年的求职情况。三年级:为分化期(冲刺就业):目标应锁定在工作申请及成功就业上.这时可先对前两年的准备做一个总结:首先检验自己已确立的职业目标是否明确,前两年的准备是否充分;然后开始毕业后工作的申请,积极参加招聘活动,在实践中检验自己的积累和准备;最后,预习或模拟面试。积极利用学校提供的条件,强化求职技巧,进行模拟面试等训练,尽可能地做出充分准备。在撰写毕业论文的时,可大胆提自己的见解,锻炼自己独立解决问题的能力和创造性。另外,要重视实习机会,通过实习从宏观上了解单位的工作方式、运转模式、工作流程,从微观上明确个人在岗位上的职责要求及规范,为正式走上工作岗位奠定良好的基础。四.目标分解与目标组合](大学三年)(1) 目标分解:目标可分解成两个大的目标—— 一个是顺利毕业,一个是成为一个有一家公司的 生化方面的 技术人员。对于第一个目标,又可分解为把专业课学好和把选修课学好,以便修完足够的学分,顺利毕业。接下来,还可以细分:在专业课程中,如何学好每一门课程(精通一两门自己喜欢的课,如有机化学);在选修课程中,需要选择哪些课程,如何学好…….对于第二目标,又可分解为接触社会阶段,了解市场阶段、熟悉公司运营阶段。接下来,还可以细分:在接触社会阶段,要采用什么办法,和哪些公司保持联系.如何锻炼自己…….(2) 目标组合:顺利毕业的前提是学好专业课程,而专业课程的学习则对职业目标(成为一个有一家公司的 生化方面的 技术人员)有促进作用。(1)自身现状英语水平可以,能流利沟通;生化专业扎实,略通经贸知识;具有较强的人际沟通能力;思维敏捷,表达较流畅;在大学期间长期担任学生干部,有较强的组织协调能力;有很强的学习。论文关于大学生目标的范文韩愈曾说:“凡事预则立,不预则废。”这里的“预”可理解为一种预见性、计划性。以下几个小故事,也许可以说明一些问题: 人生之旅从选定方向开始。没有方向的帆永远是逆风,没有方向的人生不过是在绕圈子。西撒哈拉沙漠中的旅游胜地——比赛尔,在很久以前,是一个只能进、不能出的贫瘠地方。在一望无际的沙漠里,一个人如果凭着感觉往前走,他只会走出许多大小不一的圆圈。后来,一位青年在北斗星的指引下,成功地走到了大漠边缘。这位青年成了比赛尔的开拓者,他的铜像被竖在小城的中央,铜像的底座上刻着一行字:新生活是从选定方向开始的。 有什么样的目标就有什么样的人生。这话出自世界顶尖潜能大师安东尼·罗宾之口。仅仅有了方向还不够,还要沿着这个方向设定目标并不断调整目标。澳大利亚的一个草原上草儿长得特别好,羊群规模越来越大。羊为了争夺食物,都不愿意落在后面,开始不断地往前奔跑,到最后所有的羊只想吃到最前面的草而都朝一个方向不停奔跑,结果成批的羊一直跑到草原尽头的悬崖边缘并跳了下去——它们已经完全忘记了自己奔跑的目标是吃草,而把奔跑本身当作了目标。用一年的时间赢得一生的成功。世界著名投资公司“软银”的创始人孙正义,曾经在23岁时花了1年多的时间来想自己到底要做什么。他把自己想做的40多种事情都列出来,而后逐一地做详细的市场调查,并做出了10年的预想损益表、资金周转表和组织结构图,40个项目的资料全部合起来足有10多米高。然后他列出了25项选择事业的标准,包括该工作是否能使自己全身心投入50年不变、10年内是否至少能成为全日本第一等等。依照这些标准,他给自己的40个项目打分排队,计算机软件批发业务脱颖而出。用十几米厚的资料做事业选择,目光放在几十年之后,这样的深思熟虑,这样的周密规划,注定了他日后的成功。把80%的时间留给未来。一成功人士说,用20%的时间去处理眼前的紧要事情,而用80%的时间去做那些暂时没有收益但以后会有的重要事情。有一则报道说,300 条鲸鱼在追逐沙丁鱼时,不知不觉被困在一个海湾里而死亡。弗里德里克·布朗·哈里斯说:“海上巨人因为追逐小利而惨死,为了微不足道的目标而空耗了自己的大力。”要为自己定一个10年规划,如果要发挥潜能,你还必须全神贯注于自己有优势并会有高回报的方面,反过来,这些优势会进一步发展并帮助你实现目标。 1953年,耶鲁大学对毕业生进行了一次有关人生目标的调查。当被问及是否有清楚明确的目标以及达成的书面计划时,结果只有3%的学生选择了肯定回答。20年后,通过跟踪调查发现,那3%有达成目标书面计划的学生,在财务状况上远高于其他97%的学生。人生的路很长,但紧要处只有几步,尤其在年轻的时候。许多人埋头苦干,却不知所为何来,到发现搭错了方向却为时已晚。因此,我们必须树立真正的目标,澄明思想,凝聚继续向前的力量。毕业论文开题报告中可行性分析是对技术的环境可行、经济可行、政策可行、技术可行进行分析,以此来判断方案的可行或不可行。并作出总结。您的开题报告有什么要求呢开题报告是需要多少字呢你可以告诉我具体的排版格式要求,希望可帮到你,祝顺利开题报告主要包括以下几个方面:(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二) 论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴ 研究的有关背景(课题的提出): 即根据什么、受什么启发而搞这项研究。 ⑵ 通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三) 本论文国内外研究的历史和现状(文献综述)。 规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五) 论文写作的目标论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确; 目标定得过高, 对预定的目标没有进行研究或无法进行研究。确定论文写作目标时,一方面要考虑课题本身的要求,另一方面要考率实际的工作条件与工作水平。(六)论文的基本内容研究内容要更具体、明确。并且一个目标可能要通过几方面的研究内容来实现,他们不一定是一一对应的关系。大家在确定研究内容的时候,往往考虑的不是很具体,写出来的研究内容特别笼统、模糊,把写作的目的、意义当作研究内容。基本内容一般包括:⑴对论文名称的界说。应尽可能明确三点:研究的对象、研究的问题、研究的方法。⑵本论文写作有关的理论、名词、术语、概念的界说。(七)论文写作的方法具体的写作方法可从下面选定: 观察法、调查法、实验法、经验总结法、 个案法、比较研究法、文献资料法等。(八)论文写作的步骤论文写作的步骤,也就是论文写作在时间和顺序上的安排。论文写作的步骤要充分考虑研究内容的相互关系和难易程度,一般情况下,都是从基础问题开始,分阶段进行,每个阶段从什么时间开始,至什么时间结束都要有规定。课题研究的主要步骤和时间安排包括:整个研究拟分为哪几个阶段;各阶段的起止时间 希望可以帮你。您的调查报告有什么要求呢调查报告是需要多少字呢调查报告准备往哪个方向写你可以告诉我具体的排版格式要求,希望可帮到你,祝顺利怎么写开题报告呢? 首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。 第二就是内容的撰写。开题报告的主要内容包括以下几个部分: 一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。 二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。 课题研究的目的,应该叙述自己在这次。热门推荐2021年这四大星座,桃花入命,恋爱上上签!在线排盘,详批你的人生12宫,据说非常准。占星师详解:解密你生肖中不为人知的故事!在线排盘,详批你的人生12宫,据说非常准。注定走不到一起的人,命运为什么安排他们相遇异性魅力评估,来看看你的异性魅力有多高?你和ta将会经历怎样的姻缘?最后的宿命又如何?你们关系结束了吗?塔罗说未必点灯招好运,祈福保平安,快来许愿点灯好运预定!2021-2025年你将迎来哪些好运?公司工会救助申请书范文2019-12-31阅读(31)纪录片策划书范文2019-12-31阅读(29)职业期望英文范文2019-12-31阅读(17)关水龙头看图说话范文2019-12-31阅读(480)社会调查报告穹顶之下谁治霾范文2019-12-31阅读(16)高速公路半年工作总结范文2019-12-31阅读(13)向市政府打报告范文2019-12-31阅读(54)社会保险人员增加表范文2019-12-31阅读(53)考试前调整心态的范文2019-12-31阅读(19)异常交易范文2019-12-31阅读(21)幼儿园收预交费的范文2019-12-31阅读(292)入党了以后怎么做范文2019-12-31阅读(18)药厂灯检岗位总结范文2019-12-31阅读(271)榆树市范文军2019-12-31阅读(80)Copyright © 2015 - 2020文秀网论文预期目标范文首页范文
运动目标检测与跟踪算法研究 视觉是人类感知自身周围复杂环境最直接有效的手段之一, 而在现实生活中 大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能 够快速的发现运动目标, 并对目标的运动轨迹进行预测和描绘。 随着计算机技术、 通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热点研究问题之 一。 而运动目标检测与跟踪是计算机视觉研究的核心课题之一, 融合了图像处理、 模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、 视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实 用价值和广阔的发展前景。 1、国内外研究现状 运动目标检测 运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出来。 根据运动目标与摄像机之间的关系, 运动目标检测分为静态背景下的运动目标检 测和动态背景下的运动目标检测。 静态背景下的运动目标检测是指摄像机在整个 监视过程中不发生移动; 动态背景下的运动目标检测是指摄像机在监视过程中发 生了移动,如平动、旋转或多自由度运动等。 静态背景 静态背景下的运动目标检测方法主要有以下几种: (1)背景差分法 背景差分法是目前最常用的一种目标检测方法, 其基本思想就是首先获得一个 背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断 此像素属于运动目标,否则属于背景图像。利用当前图像与背景图像的差分来检 测运动区域,一般能够提供比较完整的特征数据,但对于动态场景的变化,如光 照和外来无关事件的干扰等特别敏感。 很多研究人员目前都致力于开发不同的背 景模型,以减少动态场景变化对运动目标检测的影响。背景模型的建立与更新、 阴影的去除等对跟踪结果的好坏至关重要。 背景差分法的实现简单,在固定背景下能够完整地精确、快速地分割出运动 对象。不足之处是易受环境光线变化的影响,需要加入背景图像更新机制,且只 对背景已知的运动对象检测比较有效, 不适用于摄像头运动或者背景灰度变化很 大的情况。 (2)帧间差分法 帧间差分法是在连续的图像序列中两个或三个相邻帧间, 采用基于像素的时 间差分并阈值化来提取图像中的运动区域。 帧间差分法对动态环境具有较强的自 适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产 生空洞现象。因此在相邻帧间差分法的基础上提出了对称差分法,它是对图像序 列中每连续三帧图像进行对称差分,检测出目标的运动范围,同时利用上一帧分 割出来的模板对检测出来的目标运动范围进行修正, 从而能较好地检测出中间帧 运动目标的形状轮廓。 帧间差分法非常适合于动态变化的环境,因为它只对运动物体敏感。实际上 它只检测相对运动的物体,而且因两幅图像的时间间隔较短,差分图像受光线 变化影响小,检测有效而稳定。该算法简单、速度快,已得到广泛应用。虽然该 方法不能够完整地分割运动对象,只能检测出物体运动变化的区域,但所检测出 的物体运动信息仍可用于进一步的目标分割。 (3)光流法 光流法就充分的利用了图像自身所携带的信息。在空间中,运动可以用运动 场描述,而在一个图像平面上,物体的运动往往是通过图像序列中图像灰度分布 的不同来体现,从而使空间中的运动场转移到图像上就表示为光流场。所谓光流 是指空间中物体被观测面上的像素点运动产生的瞬时速度场, 包含了物体表面结 构和动态行为等重要信息。 基于光流法的运动目标检测采用了运动目标随时间变 化的光流特性,由于光流不仅包含了被观测物体的运动信息,还携带了物体运动 和景物三位结构的丰富信息。 在比较理想的情况下,它能够检测独立运动的对象, 不需要预先知道场景的任何信息,可以很精确地计算出运动物体的速度,并且可 用于动态场景的情况。 但是大多数光流方法的计算相当复杂,对硬件要求比较高, 不适于实时处理,而且对噪声比较敏感,抗噪性差。并且由于遮挡、多光源、透明 性及噪声等原因,使得光流场基本方程——灰度守恒的假设条件无法满足,不能 正确求出光流场,计算方也相当复杂,计算量巨大,不能满足实时的要求。 动态背景 动态背景下的运动目标检测由于存在着目标与摄像机之间复杂的相对运动, 检测方法要比静态背景下的运动目标检测方法复杂。常用的检测方法有匹配法、 光流法以及全局运动估计法等。 2、运动目标跟踪 运动目标跟踪是确定同一物体在图像序列的不同帧中的位置的过程。 近年来 出现了大批运动目标跟踪方法,许多文献对这些方法进行了分类介绍,可将目标 跟踪方法分为四类:基于区域的跟踪、基于特征的跟踪、基于活动轮廓的跟踪、 基于模型的跟踪,这种分类方法概括了目前大多数跟踪方法,下面用这种分类方 法对目前的跟踪方法进行概括介绍。 (1)基于区域的跟踪 基于区域的跟踪方法基本思想是: 首先通过图像分割或预先人为确定提取包 含目标区域的模板,并设定一个相似性度量,然后在序列图像中搜索目标,把度 量取极值时对应的区域作为对应帧中的目标区域。 由于提取的目标模板包含了较 完整的目标信息,该方法在目标未被遮挡时,跟踪精度非常高,跟踪非常稳定, 但通常比较耗时,特别是当目标区域较大时,因此一般应用于跟踪较小的目标或 对比度较差的目标。该方法还可以和多种预测算法结合使用,如卡尔曼预测、粒 子预测等,以估计每帧图像中目标的位置。近年来,对基于区域的跟踪方法关注 较多的是如何处理运动目标姿态变化引起的模板变化时的情况以及目标被严重 遮挡时的情况。 (2)基于特征的跟踪 基于特征的跟踪方法基本思想是:首先提取目标的某个或某些局部特征,然 后利用某种匹配算法在图像序列中进行特征匹配,从而实现对目标的跟踪。该方 法的优点是即使目标部分被遮挡,只要还有一部分特征可以被看到,就可以完成 跟踪任务,另外,该方法还可与卡尔曼滤波器结合使用,实时性较好,因此常用 于复杂场景下对运动目标的实时、 鲁棒跟踪。 用于跟踪的特征很多, 如角点边缘、 形状、纹理、颜色等,如何从众多的特征中选取最具区分性、最稳定的特征是基 于特征的跟踪方法的关键和难点所在。 (3)基于活动轮廓的跟踪 基于活动轮廓的跟踪方法基本思想是:利用封闭的曲线轮廓表达运动目标, 结合图像特征、曲线轮廓构造能量函数,通过求解极小化能量实现曲线轮廓的自 动连续更新,从而实现对目标的跟踪。自Kass在1987年提出Snake模型以来,基 于活动轮廓的方法就开始广泛应用于目标跟踪领域。相对于基于区域的跟踪方 法,轮廓表达有减少复杂度的优点,而且在目标被部分遮挡的情况下也能连续的 进行跟踪,但是该方法的跟踪结果受初始化影响较大,对噪声也较为敏感。 (4)基于模型的跟踪 基于模型的跟踪方法基本思想是: 首先通过一定的先验知识对所跟踪目标建 立模型,然后通过匹配跟踪目标,并进行模型的实时更新。通常利用测量、CAD 工具和计算机视觉技术建立模型。主要有三种形式的模型,即线图模型、二维轮 廓模型和三维立体模型口61,应用较多的是运动目标的三维立体模型,尤其是对 刚体目标如汽车的跟踪。该方法的优点是可以精确分析目标的运动轨迹,即使在 目标姿态变化和部分遮挡的情况下也能够可靠的跟踪, 但跟踪精度取决于模型的 精度,而在现实生活中要获得所有运动目标的精确模型是非常困难的。 目标检测算法,至今已提出了数千种各种类型的算法,而且每年都有上百篇相 关的研究论文或报告发表。尽管人们在目标检测或图像分割等方面做了许多研 究,现己提出的分割算法大都是针对具体问题的,并没有一种适合于所有情况的 通用算法。 目前, 比较经典的运动目标检测算法有: 双帧差分法、 三帧差分法(对 称差分法)、背景差法、光流法等方法,这些方法之间并不是完全独立,而是可 以相互交融的。 目标跟踪的主要目的就是要建立目标运动的时域模型, 其算法的优劣直接影响 着运动目标跟踪的稳定性和精确度, 虽然对运动目标跟踪理论的研究已经进行了 很多年,但至今它仍然是计算机视觉等领域的研究热点问题之一。研究一种鲁棒 性好、精确、高性能的运动目标跟踪方法依然是该研究领域所面临的一个巨大挑 战。基于此目的,系统必须对每个独立的目标进行持续的跟踪。为了实现对复杂 环境中运动目标快速、稳定的跟踪,人们提出了众多算法,但先前的许多算法都 是针对刚体目标,或是将形变较小的非刚体近似为刚体目标进行跟踪,因而这些 算法难以实现对形状变化较大的非刚体目标的正确跟踪。 根据跟踪算法所用的预 测技术来划分,目前主要的跟踪算法有:基于均值漂移的方法、基于遗传算法的 方法、基于Kalman滤波器的方法、基于Monto Carlo的方法以及多假设跟踪的方 法等。 运动检测与目标跟踪算法模块 运动检测与目标跟踪算法模块 与目标跟踪 一、运动检测算法 1.算法效果 算法效果总体来说,对比度高的视频检测效果要优于对比度低的视频。 算法可以比较好地去除目标周围的浅影子,浅影的去除率在 80%以上。去影后目标的 完整性可以得到较好的保持,在 80%以上。在对比度比较高的环境中可以准确地识别较大 的滞留物或盗移物。 从对目标的检测率上来说,对小目标较难进行检测。一般目标小于 40 个像素就会被漏 掉。对于对比度不高的目标会检测不完整。总体上来说,算法在对比度较高的环境中漏检率 都较低,在 以下,在对比度不高或有小目标的场景下漏检率在 6%以下。 精细运动检测的目的是在较理想的环境下尽量精确地提取目标的轮廓和区域, 以供高层 进行应用。同时在分离距离较近目标和进行其它信息的进一步判断也具有一定的优势。 反映算法优缺点的详细效果如下所示: 去影子和完整性 效果好 公司内视频 左边的为去影前,右边的 为去影后的结果,可以看出在 完整 性和去影率上 都有所 突 出。 这两个视频的共周特点 城市交通 是,影子都是浅影子,视频噪 声不太明显。目标与背景的对 比度比较高。 效果差 这两个视频的特点是影子 都是深影子。虽然影子没有去 掉,但是物体的完整性是比较 高的。主要原因就是场景的对 路口,上午 十点 比度比较高。 滞留物检测和稳定性 效果好 会议室盗移 效果好的原因,一是盗移或 滞留目标与背景对比度较大,二 是目标本身尺寸较大。 另外盗移物或滞留物在保持 各自的状态期间不能受到光照变 化或其它明显运动目标的干扰, 要不然有可能会造成判断的不稳 定。 效果差 会议室 遗留 物 大部分时间内,滞留的判断 都是较稳定的,但是在后期出现 了不稳定。主要原因是目标太小 的原故。 因此在进行滞留物判断时, 大目标,对比度较高的环境有利 于判断的稳定性和准确性。 漏检率 效果好 城市交通 在对比度高的环境下, 目标相对都较大的情况下 (大于 40 个像素) 可以很 , 稳定的检测出目标。 在这种 条件下的漏检率通常都是 非常低的,在 以下。 效果差 行人-傍晚 和“行人”目录下 的 其 它 昏 暗 条件 下的视频 在对 比度较低的 情况 下,会造成检测结果不稳 定。漏检率较高。主要原因 是由于去影子造成的。 这种 对比度下的漏检率一般在 6%以下。 除了 对比度低是 造成 漏检的原因外, 过小的目标 也会造成漏检,一般是 40 个像素以下的目标都会被 忽略掉。 算法效率内存消耗(单位:b) .MD_ISRAM_data .MD_ISRAM_bss .MD_SDRAM_data 0x470 0x24 0x348 .MD_SDRAM_bss .MD_text 0x1a8480 0x6d40 速度 ms 运动区域占 2/3 左右时 CPU 占用率 一帧耗时 Max:57% Min: Avg: Max:23 Min: Avg:15 运动区域占 1/3 左右时 Max:45% Min: Avg:20% Max:18 Min: Avg:8 检测参数说明 检测参数说明 检测到的滞留物或盗走物的消失时间目前分别设定在 200 帧和 100 帧, 可以通过参数来 自行调整。 目前目标与背景的差异是根据局部光照强度所决定的, 范围在 4 个像素值以上。 目前参 数设置要求目标大小要在 20 个像素以上才能被检测到,可以通过参数来自行调整。 目标阴影的去除能力是可以调整的, 目前的参数设置可以去除大部分的浅影子和较小的 光照变化。 适用环境推荐光照条件较好(具有一定的对比度)的室内环境或室外环境。不易用它去检测过小的目 标,比如小于 40 个像素的目标。室外环境不易太复杂。输出目标为精细轮廓目标,可以为 后面高层应用提供良好的信息。 二、目标跟踪 稳定运行环境要求此版本跟踪算法与运动检测算法紧密结合, 对相机的架设和视频的背景环境和运动目标 数量运动方式有一定要求: 背景要求: 由于运动跟踪是基于运动检测的结果进行的, 所以对背景的要求和运动检测一样, 背景要求: 运动目标相对于背景要有一定反差。 运动目标:由于运动检测中,对较小的目标可能过滤掉。所以运动目标的大小要符合运动检 运动目标: 测的要求。运动目标的速度不能太大,要保证前后帧运动目标的重合面积大于 10 个像素。此阈值可修改(建议不要随意修改,过小,可能把碎片当成原目标分 裂出来的小目标,过大,可能失去跟踪。当然可试着调节以适应不同场景)。该 算法对由于运动检测在地面上产生的碎片抗干扰性比较差, 运动目标和碎片相遇 时,容易发生融合又分离的现象,造成轨迹混乱。消失目标和新生目标很容易当 成同一目标处理,所以可能出现一个新目标继承新生目标的轨迹。 运动方式: 运动目标的最大数量由外部设定。 但运动跟踪对运动目标比较稀疏的场景效果比 运动方式: 较好。 算法对由于运动检测在运动目标上产生的碎片有一定的抗干扰。 算法没对 物体的遮挡进行处理。对于两运动目标之间的遮挡按融合来处理。 拍摄角度: 拍摄角度:拍摄视野比较大,且最好是俯视拍摄。
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
332 浏览 3 回答
358 浏览 5 回答
356 浏览 4 回答
334 浏览 5 回答
200 浏览 6 回答
326 浏览 2 回答
191 浏览 10 回答
330 浏览 4 回答
114 浏览 7 回答
278 浏览 3 回答
299 浏览 3 回答
134 浏览 3 回答
237 浏览 3 回答
326 浏览 3 回答
81 浏览 10 回答