随着教育科研意识的不断深化,很多教师希望把自己的研究成果,以论文形式公开发表. 根据笔者的切身经历,我认为初写数学论文的教师, 为了尽可能的少走弯路,应充分注意以下几点. 一、借鉴成果,博采众长 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情. 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴. 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息. 信息的表现形式多种多样,大致可以分为三类:(1)书面形式,比如各种书籍、报纸、刊物等;(2)口头形式,比如各种会议、听课、交流、咨询等;(3)电子形式,比如以网络、光盘、软盘等为载体的信息. 来源于不同形式的信息各有千秋,有的权威性高,有的时效性快,有的针对性强,有的信息量大. 这些信息的保存方式也各不相同,主要有四种:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容,主要用于一般性的信息;(2)做摘记,写在本上,编好序号目录,以便查找,所记内容比卡片更详尽,适用于比较重要的信息;(3)复印,对于特别重要并且篇幅较长的文章,可以全文复印,复印件应用同样大小的复印纸,对不同大小的原件缩放得一样大,便于装订、排序、编目;(4)存盘,这是针对电子信息形式的特殊性采用的一种保存方式,复制到微机硬盘或软盘上. 有条件的,还能使用录音、录像、刻录光盘等等方式. 自1996年以来,我手抄20多万字,复印存盘10多万字,这些宝贵的文献资料,为我的教育科研和论文写作,提供了强大的理论支持和实践指导. 二、完备素材,厚积薄发 论文只是教研结果的表现形式之一,有人提出“论文还自教研始”、“论文在研不在写”等观点,有一定的道理. 如果只看重论文发表这一结果,急功近利,做无病之呻吟,效果肯定不好. “厚积”是基础,没有来源于实践的经验教训、数据统计等等素材的积累,想要写出比较有价值的论文,几乎是不可能的. 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习的过程;(2)课后反思,对每节课的成败得失都及时的总结下来,以便进一步研究;(3)作业记录,从学生作业中不但能发现具有共性的问题,提示我们教学教研的改革方向,而且学生中也会有许多新颖的解题思想,值得教师学习;(4)考试总结,测验考试是对学生知识的集中检验,即使在素质教育中,也不能把考试视为应试教育的“余孽”,“打入冷宫”,关键是如何改革考试制度和内容,适应素质教育;(5)解题分析,教师平时应坚持解答一定数量的数学题,解题是数学的核心任务之一,这样做可以活跃思维,并从中探索解题规律和命题趋势;(6)调查反馈,调查可以用谈心、问卷等多种形式进行,从中所反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信他人,在阅读他人的论文时,有时也能发现其存在的不足甚至是错误之处,对此只要自己的理由充分就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,但这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起. 几年来,我以“教学手记“形式,积累的素材已达200多份45万字,在此基础上进一步整理成文,已在国家级、省级报刊发表各类数学论文(或文章)100余篇17万字. 其中,有些论文的素材积累投入了很大力度,比如发表于《理科考试研究》(初中版)2001年第10期的《“动”了五年的压轴题》一文,是在对1997年~2001年五年间,河北省中考压轴题的命题规律进行研究的基础上,汇总整理而成的;发表于《校园学习·数学》2002年第1~2期的《方程(组)中考复习精要》一文,素材源于对2001年70余份中考试题的分析精选. 三、立足实践,提炼新意 初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的. 正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展. 近期,我正负责河北省“创新教育”子课题“培养学生创造性思维能力”的研究工作,这一课题也是当前教育界的一个热门话题,我将自己的阶段性研究成果写成论文《培养学生创造性思维能力的常用方法》,参加了2000年8月在京举办的“全国初中数学教育第十届年会”论文评选,荣获二等奖. 再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手,据此李凤君老师和我合作写成《怎样判断勾股数》一文,发表在《教育实践与研究》2000年第2期上. 论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时. 就拿对中考试题的研究来说:河北省2000年中考于6月22日结束,我随即对当年的中考试题加以分析,从考查学生创造性思维能力的角度深入剖析,于7月份创作完成了《注重考查学生的创造性思维能力——2000年河北省中考数学试题评析》并寄给《中小学数学》(初中教师版),后来发表于该刊2001年第3期;一般每年的全国各地中考试题汇编资料最早在10月份面世,通过研究我发现,1998年的中考试题中不等式应用题异军突起,而且当年考生的得分率偏低,必将引起以后中考师生的注意,针对这一新动向,我于11月份写成《例谈中考不等式(组)应用题》一文,对此进行分类研究,并补充编拟新试题,指出命题趋势,该文发表于《河北教研》1999年第2期. 四、从小到大,循序渐进 写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,提醒初写者先尝试以下两个步骤: 第一步,练习写学习辅导类的文章. 几年来,我在《学习报》、《少年智力开发报》、《初中生周报》等报纸上,发表学习辅导类文章数十篇. 这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究. 学习辅导类的报刊面向广大学生,通常用稿量大,发表得快;其内容突出针对性,深入浅出,形式灵活;所需稿件短小精悍,通常有1000字左右;要求与教学同步,应该比教学进度提前3个月寄稿;写稿还应分析用稿动向,目前学习辅导类报刊多数存在高年级稿多、低年级稿少,综合知识稿多、单个知识稿少等等现象,初写者可以倾向于写“少”的方面的稿;稿件写完后要反复修改,确保无误,再抄写或打印寄出. 第二步,进行教学研究类论文的写作,侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文. 可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等. 如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,比如发表于《中小学数学》(初中教师版)2001年第9期的《谈计算器的教学》一文,就是在此方面的尝试. 需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华;论文篇幅不求长,大家都知道的少说或不说,适可而止,相信读者的阅读水平,主要适于教师阅读的论文,长短不一,就我发表的论文而言,短的仅千余字,长的近7000字,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,但对与教学同步性的要求则比较宽松;为提高发稿率,应认真研读报刊风格,留心新增栏目、征稿启事,对发现的问题勇于质疑争鸣. 五、文外功夫,提高修养 文外功夫,主要指一个人的思想境界、个人修养、意志品格等方面的表现. 它具体体现在两个方面: 一方面是,讲究文德,不要过分看重名利、沽名钓誉. 必须信守承诺,尤其是应约写稿,一定要迅速及时,保质保量;如所约稿件较多,也可以多写几篇给编辑以选择的余地;为避免信件丢失,可用挂号信寄稿,有时还需用特快专递、传真、发E-mail等方式. 当前很多单位(甚至有的是个人)利用教师希望发表论文的迫切心理,征集各种名目的“自助论文”,对此应慎重对待,不能为了名利,就写一些没有价值的文字,花钱发表. 一稿多发一般是由一稿多投所致,如果在约定时间内未收到用稿通知、样报样刊或稿费,而再投他刊造成重复发表的尚有情可原;但有的把一篇稿同时寄往多家报刊,甚至明知已经发表录用又另投他刊,即使侥幸被重复发表,无论间隔时间长短,也很容易被读者识破,这样做既不尊重编辑,影响报刊质量,又坑害读者,降低个人声誉,结果适得其反. 更为严重的是剽窃抄袭他人论文,不但可耻,而且是一种违法行为. 另一方面是,坚持不懈,持之以恒. 我从1996年初开始着手于素材的积累,不断自觉的夯实基本功,历时一年多,直至1997年开始投稿,结果投寄的第3篇论文《代数式求值十法》就被发表于《理科考试研究》1997年第6期,喜悦之情溢于言表,细细回味,一年多的“寂寞”也是初次收获的重要因素,如果坚持不下来,也只能是半途而废了. 相对于更多的论文作者来说,我还算是幸运的,他们在谈到自己的写作经验时,提到投稿数十次、甚至近百次以后才有作品问世,其间的酸甜苦辣、经验体会是难以言传的,“失败是成功之母”、“功夫不负有心人”在他们身上得到了充分的体现. 以上所谈是我对初中数学论文写作的几点看法,希望能给刚刚开始写作的朋友带来一些帮助. 所涉及的内容较为肤浅,如要在论文写作的道路上不断提高,还需要借鉴更多人的成功之道,但无论如何,个人的实践创新才是最重要的因素之一.
数学学习兴趣及其培养内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教学环节,贯穿于数学教学的全过程。关键词:学习兴趣 兴趣 认知学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。1.学习兴趣及特点 学习兴趣兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着,兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习,使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。 兴趣的特点 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴趣。学习的兴趣是可以诱发和培养的。 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是建立在需要的基础之上的。 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支持、推动和促进作用。(2)为未来活动做准备。 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美感引起的自觉兴趣和潜在兴趣则是持久兴趣。2 影响兴趣形成与发展的因素 兴趣与需要的关系皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的,兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需要的人则更喜欢简单的任务。 兴趣与年龄的关系不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。 兴趣与性格和能力的关系不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。 兴趣与他人、集体及地区的影响有关学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。 兴趣与性别的关系从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚至讨厌数学的也是男生多于女生。3 兴趣的形成过程儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的注意和兴趣。要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域连接起来。章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。4 兴趣的作用兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌”于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来时,就表现为一种稳定的兴趣的个性倾向性。5 兴趣的发展规律 兴趣发展逐步深化人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平,它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目性和广泛性。乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、自发性和坚持性的特点。志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。 直接兴趣与间接兴趣的相互转化兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。 中心兴趣与广泛兴趣的相互促进中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。 好奇心、求知欲、兴趣密切联系,逐步发展从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三者又是沿着好奇心—求知欲—兴趣的方向发展的。好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某事物或活动的兴趣。 兴趣与努力不可分割兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣,也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。6 激发和培养学生学习数学的兴趣数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城一中的高三毕业班学生的调查显示%的学生认为课业负担较重的科目是数学,%的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节,贯穿于数学教学的全过程。 要求学生建立积极的心理准备状态教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。 帮助学生形成正确的学习价值观学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。 提高教学水平引发学生学习兴趣 设悬激趣创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也得到解决。 实践激趣数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值,同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的兴趣。 竞争激趣课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足够的机会,鼓励他们竞争。 操作激趣感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容,使学生的认识由感性的基础上升到理性知识。 评价激趣教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导,忌用简单、粗糙的语言挫伤学生的学习知识性:第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说:“圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。”从而激发学生的学习兴趣。第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导,让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功,产生兴趣。 加强直观,引导动手操作在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手操作能有效地引发学生的学习兴趣。 建立平等和谐的师生关系教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心,参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关系,学生才会亲其师、信其道、学其知,产生兴趣。 应用现代化教学手段培养学习兴趣学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰好弥补了这一不足。随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。参考文献:[1]陈在瑞、路碧澄注。数学教育心理学。北京:中国人民大学出版社,1995。[2]李洪玉,何一粟著。学习动力。武汉:湖北教育出版社,1999。[3]李洪玉,何一粟著。学习能力发展心理学。合肥:安徽教育出版社,2004。[4]刘显国。激发学习兴趣艺术。北京:中国林业出版社,2004。[5]田中。初中学生性别与数学学习关系的问卷调查分析。数学通报,2000(6)。[6]徐德雄。高中数学学业负担的调查及对策。中学数学教学参考,1997(3)。另一篇:谈影响高中数学成绩的原因及解决方法 有人这样形容数学:“思维的体操,智慧的火花”。在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分,已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力。然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。笔者在2002年暑假期间参加新疆高中数学骨干教师培训时,有几位给我们授课的文科专家学者,就谈到自己在上高中时虽然很想学好数学,可就是数学成绩提不高,最怕见高中数学老师。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下: 面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面。 1.被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。没有真正理解所学内容。 2.学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。 3.不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 4.进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。 高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策: 1.加强学法指导,培养良好学习习惯。 良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。 上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。 及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。 独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。 解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。 系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。 课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。 2.循序渐进,防止急躁 由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。 3.研究学科特点,寻找最佳学习方法 数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。 4.加强辅导,化解分化点 如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点。对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。
朋友,您要的这个论文怎么也没什么范围啊??给你介绍两篇,真心希望能对你有所帮助!!解简答题方法寻径“简答题是考查学生阅读能力及语言概括能力不可缺少的重要方法,近几年来随着高考这类题型的比例增大,中学语文教学中也越发重视对这类题型的训练,下面就此谈谈解题的思路与技巧。1.深解文意,切忌孤立作答。由于简答题一般出现在高考的主观试题阅读部分,因此在完成这类题的时候,切忌孤。立静止地回答。要总览全篇,根据命题要求精读有关部分,认真钻研,再做答案。如高中第一册《荷塘月色》“月光如流水一般----如梵婀玲上奏着的名曲”一段,描写的是___;原文流露了作者和感情;就本段而言,则只有之情。为了准确作答,就必须在阅读全文的基础上,再精读此段,便可概括出本段描写的是“荷塘上的月色”;(荷塘月色)原文流露了作者“淡淡的哀愁以及难得偷来片刻逍遥的淡淡的喜悦”;就本段而言,则只表现了作者的“淡淡的喜悦”。2.充分利用试题的全部给定信息。上挂下联是阅读实际中最常用的方法,只靠推想和猜测有些题是难以确定答案的。要认真阅读,看清楚已知的是什么,未知的是什么,求解的是什么,隐藏有什么,暗示着什么,答题形式和要求是什么。如1991年现代文阅读第34题:作者为什么说“特殊的日子”?我们在答题时应首先注意到副标题“记1928年的一次俄国旅行”牐瑺我们可再借鉴文后小注:“列夫·托尔斯泰(1828----1910)”,这样我们把二者联系在一起,就会得出“1928-1828=100”。由此“这特殊的日子”便是托尔斯泰诞生一百周年。现代文的阅读测试点在原文里,跟上下文有着密切的关系,答案也往往就隐藏在字里行间,因此一定要充分利用给定信息。3.概括转述。辨析和筛选文中重要的信息和材料、对内容的归纳与概括能力。如1995年现代文阅读24——28题是阅读吕叔湘的《叶圣陶语文教育论集序)(节录),其中第25题是阅读第二自然段。附阅读内容的第二自然段:语言文字本来只是一种工具,日常生活中少不了它,学习以及交流各科知识也少不了它。这样一个简单的事实,为什么很多教语文的人和学语文的人会认识不清呢?是因为有传统的作法作梗。“学校里的一些科目,都是旧式教育所没有的,唯有国文一科,所做的工作包括阅读和写作两项,正是旧式教育的全部。一般人就以为国文教学只需继承从前的传统好了,无须乎另起炉灶。这种认识极不正确,旧式教育是守着古典主义的:读古人的书籍,意在把书中内容装进头脑里去,不问它对于现实生活适合不适合,有用处没有用处;学古人的文章,意在把那一套程式和腔调模仿到家,不问它对于抒发心情相配不相配,有效果没有效果。旧式教育又是守着利禄主义的:读书作文的目标在取得功名,起码要能得‘食禀’,飞黄腾达起来做官做府,当然更好;至于发展个人生活上必要的知能,使个人终身受用不尽,同时使社会间接蒙受有利的影响,这一套,旧式教育根本就不管。”本题要求考生“用自己的话分条简要概括”、“旧式教育的三种弊端”,并且每条不超过8个字。假如我们的考生不全用自己的话去加以概括,而是摘录原文的语句,那么就有可能答成“把内容装进头脑”,“意在模仿程式腔调”、“守着利禄主义”,答题就不全面,自然就不够准确。倘若只是走马观花。没能认真阅读原文,尽管是用自己的话概括,也有可能答得似是而非,含糊不清,从而失分。我们只有真正理解了作者的原意,整体把握文意,具有准确简炼的语言表达能力,才能转化为正确的答案。即:第一种弊端是“死记硬背古书内容”。第二种弊端是“生搬硬套作文程式”。第三种弊端是“追求功名利禄”。以上所述只是一些解题的一般思路和方法,在学生答题中还应结合试题的自身特点随机应变,这样便可以创造出更多更好的行之有效的解题方法。数学学习方法及其指导 音乐照片笑话手机铃声图片下载中心杨骞近几年来,旨在教会学生会学习、提高学生自学能力的学法指导的研究和实践已是基础教育改革的一个热门课题。这一课题的提出和研究,不仅对当前提高基础教育质量、实施素质教育具有现实意义,而且对培养未来社会发展所需要的人才、促进科教兴国具有历史意义。随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。一对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”〔1〕等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学习总结、课外学习等各个学习环节之中)〔2〕;建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)〔3〕等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。二从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”〔4〕。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。三从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”〔5〕。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。四根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。4.根据数学方法指导的目的和内容适度调整例题。通常,人们根据问题的条件(A)、解决的过程(B)及问题的结论(C)的情况把数学题划分为标准题和非标准题两大类:如果条件和结论都明确,学生也熟知解题过程(即A、B、C三要素全已知),这种题为标准题(记为ABC);A、B、C三要素中缺少一个或两个要素的题则为非标准题。如果分别用X、Y、Z表示对应于A、B、C的未知成分,则非标准题的题型(计6种)可表示为:ABZ,AYC,XBC,AYZ,XBZ,XYC。数学教材中的例题大多数是ABC型和ABZ型,有部分的AYC型和极少数的AYZ型。由于数学学法指导的一项重要任务是教学生会抽象、概括、归纳、演绎,会数学地思考和交流,会分析问题和解决问题,因而例题教学要特别注重教材中缺少的几种类型题的教学。其中最为重要的是“开放性题”(ABZ型和AYZ型例题中,Z不唯一)和“数学问题解决”中所指出的“数学应用题”(AYC型及AYZ型中所涉及的主题是数学以外的内容)。对于“开放性题”,由于它的结论不唯一,对培养学生数学思维有着至关重要的作用。对于“数学应用题”,则由于它的解决要用数学模型法,因而对培养学生运用分析问题和解决问题的方法是十分重要的。从数学学法指导的角度来说,适度调整例题很有必要。调整的策略有二:一是改,即将已有的题型变换为别的题型;二是增,即增加与知识点有关的“开放性题”和“数学应用题”。5.注重对例题的全方位反思。例题的作用是多方面的,除上文提到的几点外,例题教学还具有传授新知识,积累数学经验,完善数学认知结构
几何的三大问题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 几何三大问题是: 1、化圆为方——求作一正方形使其面积等於一已知圆; 2、三等分任意角; 3、倍立方——求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。 这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
90 浏览 7 回答
207 浏览 6 回答
216 浏览 4 回答
146 浏览 4 回答
220 浏览 4 回答
91 浏览 3 回答
104 浏览 3 回答
163 浏览 3 回答
214 浏览 4 回答
358 浏览 5 回答
202 浏览 5 回答
277 浏览 3 回答
214 浏览 4 回答
201 浏览 4 回答
193 浏览 6 回答