关于数学论文范文2000字
现如今,大家或多或少都会接触过论文吧,论文是我们对某个问题进行深入研究的文章。如何写一篇有思想、有文采的论文呢?下面是我整理的数学论文范文2000字,供大家参考借鉴,希望可以帮助到有需要的朋友。
论文题目: 学生自主学习能力培养提升小学数学课堂教学效果
摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。
关键词: 自主学习能力;创新思维;小学数学
在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。
一、小学数学教学中的现状及反思
小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。
(一)情境教学中过多地引入情境,丧失了教学目标
一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。
(二)成人化的想象对小学生缺乏新奇的吸引性
数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。
(三)课堂教学中“数学味”的弱化和缺失
在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。
二、自主学习的概念及其重要性
在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。
(一)提高数学知识吸收的质量
自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。
(二)为后续的数学知识学习奠定基础
小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。
(三)自主发现和自主学习能力的培养
小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。
三、自主性学习的小学数学课堂教学策略
小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。
(一)数学课堂有效导入,激发学生的自主参与性
合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。
1.以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]
2. 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。
3.以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]
4.用数学问题引导学生进行自主性的学习。问题可以调动学生的积极性,让学生在带着困惑、怀疑和探索的心理,进行数学知识的自主性学习,这也是教学引入策略之一。在问题设置的数学教学中,要注意问题提出的难易程度,要根据学生的思维层次进行问题的导入,逐渐进入数学知识的学习,而不能以深奥、难解的问题来给教学设置障碍,使学生缺乏探究的动力和兴趣。
(二)师生共学———尝试自主参与的探究学习过程
教师对学生的教育,流传着一句名言:告诉的知识,容易忘记;分析出来的知识,可以记住;自主参与的知识,就会真正理解。这意味着只有让学生自己动手、动脑自主参与,才能在动手实践、自主探索、合作交流的过程中,掌握数学知识的内化,培养自主学习能力。
1.引导学生进行自主性的探索学习。在数学“认识钟表”一课中,为了让学生对其有数学性的认知,需要引导学生进行对实物钟表的观察、触摸与参与,让小学生在观察的过程中注意到长针和短针的区别,并观察相邻两个数字之间的大小相等的格,学生在对钟表的触摸、观察和实践操作的过程中,完成了对数学知识的认知。
2.根据学生层次进行小组合作式自主式学习。小组合作必须在教师的指导和辅导之下完成,要引导学生仔细观察、对比,如在“长方形”的认知中,要各小组进行分组比赛,寻找出最多的长方形者获胜,在大家踊跃参与的过程中,教师要引导学生注意观察长方形和正方形的区别,通过对比、测量等不同手段,了解对生活中“长方形”的认知,如:课本、长方形的长桌、黑板的形状等,大家在分组合作的过程中掌握了数学知识的规律,并主动性地获取了相应的知识。
(三)数学知识的应用———巩固数学知识的自主性探索
小学生在教学的过程中掌握了基本的数学概念和规律,教师还要将数学知识进行巩固和运用,要充分利用“温故而知新”的记忆特点,对数学知识进行巩固和实际应用。例如:在数学“做一做”的课后练习中,可以组织学生进行同桌互检式的巩固,还可以进行板演练习、课堂评价的方式进行巩固,这样可以激励学生自主进行数学知识的实践性的巩固和运用,将更多的数学知识转化为内在的知识。在知识的巩固过程中要灵活加以整合和运用,如小学生学习完了图形这一课,对三角形、圆形、长方形、正方形、平行四边形等进行准确的认知后,就要进行灵活多变的图形拼板练习,让学生通过对不同图形的修剪和粘贴,进行图形自由空间的想象和布局,增强数学知识的应用能力。
四、结束语
小学数学教学的重点在于培养学生的自主学习能力,根据小学生的年龄特点和思维层次,进行动手、动脑的习惯培养,在生活引入、故事引入、游戏引入、情境引入的教学策略之下,用自主性、参与性、积极性进行数学知识的感知,并在自主探索、交流合作的过程中增加对数学知识的学习和巩固,提升小学数学的课堂教学效果。
参考文献:
[1]牟瑛.营造充满探索的数学课堂环境[J].商业文化(学术版),2010,(08).
[2]张大明.引导自主探究促进主动发展[J].成功(教育),2010,(04).
[3]周波儿.数学教学中如何捕捉和利用“动态生成”[J].山西师范大学学报(自然科学版),2010,(S1).
随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。
一、数学建模和大学生数学建模竞赛
何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。
那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。
二、大学生数学建模竞赛与课程教学培训中存在的问题
通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的'情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。
第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。
第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。
第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。
第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。
三、大学生数学建模课程教学培训策略
大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。
(一)教师层面
首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。
其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。
最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。
(二)学校层面
首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。
其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。
最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。
参考文献:
[1]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,2004.
[2]李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.
[3]赫孝良.数学建模竞赛赛题简析与论文点评[M].西安:西安交通大学出版社,2002.
摘要:随着我国基础教育的不断改革和完善,创新形势下的课程标准已经逐渐落实,相比于以往的教育机制,新课程标准更加关注学生的发展能力,鼓励教师根据学生的特点开展教育活动,进而全面提高我国的教育质量和教学效率。新课程标准要求教师在制定教学计划时要准确定位自己和学生之间的关系,以便于开展更加高效的课堂教育。
关键词:小学数学;高效课堂;教学策略
数学是一门逻辑思维较强的学科,因此数学基础教育质量极其重要。高效的小学数学课堂不仅可以让学生的成绩得到有效提高,还能让学生在生活中体会到数学的魅力,加强学生对于理性思维的拓展和延伸,同时还能将学生对数学的兴趣调动起来。
1重视学生对数学概念的理解
学生开始接受小学教育的年龄在6周岁左右,该年龄阶段的孩子对故事的兴趣比公式的兴趣大的多,因此,教师可以在数学课程开始之前让学生先了解该节课程涉及到的历史故事,让学生不要认为数学是很难理解的课程,让学生在更加放松的心态中去完成教学任务。传统教育中,数学教师都会给学生大量的题目来巩固知识点和公式,部分学生在还没有完全理解课堂内容时就开始做题,答案准确率肯定很难得到保障。因此,教师应当重视学生对数学概念的理解程度,让学生先理解数与数之间的关系再开始做习题。同时,教师应当在课堂上为学生留出提问和解疑的时间,教师在和学生的问答互动中拉近彼此之间的距离,提高学生对数学的认知度和敏感度。
2积极开展数学情境教学模式
数学课程的开展必须要有严谨的逻辑性作为支持,如果教师只用数字的形式为学生讲解无实物情境下的运算知识,很难让学生理解这个运算在生活中的价值,而且单纯的思维计算会对小学生产生很大的困扰,小学生更倾向于涉及到生活经验的数学情境模式。教师在开展运算知识点授课的过程中,可以使用不同种类的水果来创建情境教学的条件,将水果的价格和数量制定好,让学生随意取用一部分水果来计算这些水果的总价格。学生在计算水果价格的时候会减轻对数学的抵触,把思维的重点放在水果的种类和形状上,教师可以在学生分组计算的同时查看学生对于价格结果的讨论情况,发现公式以及口诀上的问题及时提出并解决,让学生在不知不觉中牢记乘法和加法的运算规律,减轻公式记忆法的枯燥和乏味,促进小学数学高效课堂教学质量的提高。
3培养学生课前预习的好习惯
数学是一门实践性质很强的学科,解题过程中需要对课题内容及运算方式进行思考,而这个过程需要学生在课前预习环节中掌握,教师应提前告诉学生即将学习的单元和知识点,让学生在有准备的情况下,更有信心的参与到数学课堂中来。教师可以鼓励学生在陪同家长购物时关注买卖运算的方式,然后在课堂上将自己的理解和发现的问题进行阐述,教师可以在与家长互动之后将学生反馈的问题一一解答,并就超市买卖中遇到的问题和课本上的知识点有效结合,让学生了解到数学在生活中的作用,学生在预习的过程中也会加深对运算公式的印象,进而提高学生对数学的兴趣和学习效率,让小学数学教学质量更加高效。
4鼓励学生从多角度解决问题
数学并非一种固定思维的学科,很多数和图形的运算都不止一种解题方式,虽然正确的答案只有一个,但是其过程有着很灵活的多变性,因此,教师应当在数学课堂上鼓励学生以不同的形式来解决问题。教师在发现学生的答案与标准答案不同时,应该首先询问学生的解题思路,而不是直接否定学生的答案,否则很容易打消学生对于数学学习的积极性。在教学条件允许的情况下,教师应当尽量使用解题方式不唯一的例题,让学生了解到集思广益的效果,在之后的课堂小组讨论中也能更加用心,有助于活跃教学气氛和教学效果,做到高效的小学数学课堂教学。综上所述,学生对于科目的兴趣和能力都不是与生俱来的,教师的引导和鼓励会使学生在课堂上的表现更加优秀。在开展小学数学课程的过程中,教师应当注重数学概念、课堂情境、课前预习以及思维扩展带来的高效影响,为学生探索欲和求知欲的提高做出贡献。
参考文献
[1]杨小生.小学数学高效课堂教学的“三三”策略[J].现代中小学教育,2011(11):21~23.
[2]潘海燕.探究小学数学数与代数的高效课堂教学策略[J].中国校外教育,2015(02):72.
[3]王粉粉.新课程背景下小学数学高效课堂教学策略探究[D].延安:延安大学,2016.
无论在学习或是工作中,说到论文,大家肯定都不陌生吧,论文写作的过程是人们获得直接经验的过程。如何写一篇有思想、有文采的论文呢?以下是我收集整理的数学小论文作文,欢迎阅读,希望大家能够喜欢。
大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。
我的肚子莫名其妙地奏起了狂响曲,“好饿啊――”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!
于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。
今天,我们全家去超市购物。
我们来到超市,看着琳琅满目的商品,我的眼睛都花了。突然,我看见货架上摆着我最爱吃的奥利奥小饼干。其中,一种是用塑料袋子装的,一种是用小纸桶装的。我看了看,发现每袋只要1。8元,而小桶装的一桶却要4。5元。于是,我毫不犹豫,随手拿了两袋1。8元的那种,放进了购物车。我推着小车,边走边美滋滋地想着:这两袋小饼干才3。6元,而那一桶就4。5元,这种袋装奥利奥小饼干实在太便宜了!
这时,妈妈走了过来。我迫不及待地把刚才的事告诉了她。妈妈一听,笑了,她提醒我说:“萌萌,你再算一算,看看到底是哪种便宜?”我不解地问:“袋装的只要1。8元,桶装的要4。5元,买一桶的价格可以买两袋还多呢,难道不是袋装的便宜吗?”妈妈耐心地说:“便宜不便宜可不能光看价钱,还要看重量的呀!你们不是学过小数吗?应该会算的!你算算吧!”于是我看了看两种饼干的重量,喃喃自语了起来:“袋装的,净重20克,用1。8元除以20,那一克就是0。09元。桶装的,净含量55克,用4。5元除以55,那一克就是0。08多元。”“我知道了!我知道了!”我兴奋得大叫起来,急忙对妈妈说:“应该是桶装的便宜!”接着我把算的过程讲给了妈妈听,妈妈听了直夸我聪明,我心里比吃了蜜还甜。
在圣诞节来临之际,许多商场都采取了各种各样的促销手段。什么满“12减6、5”全场五折起“”满500减50“,看的我眼花缭乱。
我跟着妈妈在新世纪商场里穿梭,琳琅满目的商品搭建了一座百转千回的迷宫。逛了好长时间,妈妈才看中了一双鞋子,标价996,妈妈觉得这双鞋非常精致,很是中意,而且正值商场搞活动,这款鞋”满12减4“,比平时买便宜多了。妈妈让我帮她算一下,一双鞋打折下来多少钱?我想:996÷12=83,83x4=332,996——332=664。”妈妈,这款鞋打折下来可以便宜332元,只需664元。“”664啊?还是有点小贵啊!宝贝,你再陪妈妈转转。“说着,妈妈拉着我的手离开了新世纪。
接着,我和妈妈来到了泰富百货商场,这里人头攒动,比起新世纪商场来,可是有过之而无不及。妈妈拉着我的手在人流中正艰难地前行。”妈妈,这儿有专柜,打6。5折,一次性消费满500就可以减50,要不,你再进去看看。“”嗯,这儿也有这款鞋。宝贝,你在帮妈妈算算,这儿需要多少钱?便宜的话,我就在这买了。“996x6。5≈647,647 >500,这样的话,还可以减去50,647——50=597,妈妈这鞋只要597元,比刚才新世纪的便宜多了,你就在这买吧。”“嗯,就听你的。”
回家的路上,我在想原来“打折”也有学问,生活可处处都有数学啊!
爸爸是一个的十足的数学迷,平时最爱出些数学题来考我了。这不,今天闲来无事又向我出题了,我问道“:爸爸今儿要出啥题?我奉陪到底:”爸爸看我自信满满,满脸笑意说:“输了可别哭鼻子,请听题:有一师徒二人共同加工26个零件,徒弟先到车间,就先拿了一些零件放在自己的机床边。师傅”来了,一看徒弟要拿去加工的零件太多了,他除了拿了留给他的零件外,又从徒弟那里拿了一半零件。徒弟觉得自己应该多干一点,又从师傅那里拿来一半。师傅不肯,徒弟只好再给师傅5个零件,最后还是师傅比徒弟多加工2个零件。请问,徒弟最初准备加工零件是多少个?“我不禁想:可以先求出徒弟最后加工零件(26÷2)÷2=12个。徒弟没给师傅5个零件时,徒弟有零件12+5=17个,徒弟没从师傅那里拿走一半之前,师傅有9×2=18个,而这时徒弟只有零件26——18=8个,因此师傅没拿走徒弟手中零件的一半之前徒弟有零件8×2=16个。这时,爸爸拍了我的肩,说:”想出来了没。“我这才恍过神来,答道:”徒弟最初准备加工零件16个。“
爸爸故弄玄虚地问:”你确定吗,还要改吗?“我胸有成竹的摇了摇脑袋,说:”不用改了 。“”恭喜你……答对了!“
我高兴的一蹦三尺高,心里乐滋滋的,像吃了蜜一样甜。
今天,我们全家去超市购物。
我们来到超市,看着琳琅满目的商品,我的眼睛都花了。突然,我看见货架上摆着我最爱吃的奥利奥小饼干。其中,一种是用塑料袋子装的,一种是用小纸桶装的。我看了看,发现每袋只要1。8元,而小桶装的一桶却要元。于是,我毫不犹豫,随手拿了两袋元的那种,放进了购物车。我推着小车,边走边美滋滋地想着:这两袋小饼干才元,而那一桶就元,这种袋装奥利奥小饼干实在太便宜了!
这时,妈妈走了过来。我迫不及待地把刚才的事告诉了她。妈妈一听,笑了,她提醒我说:“萌萌,你再算一算,看看到底是哪种便宜?”我不解地问:“袋装的只要元,桶装的要元,买一桶的价格可以买两袋还多呢,难道不是袋装的便宜吗?”妈妈耐心地说:“便宜不便宜可不能光看价钱,还要看重量的呀!你们不是学过小数吗?应该会算的!你算算吧!”于是我看了看两种饼干的重量,喃喃自语了起来:“袋装的,净重20克,用元除以20,那一克就是元。桶装的,净含量55克,用元除以55,那一克就是多元。”“我知道了!我知道了!”我兴奋得大叫起来,急忙对妈妈说:“应该是桶装的便宜!”接着我把算的过程讲给了妈妈听,妈妈听了直夸我聪明,我心里比吃了蜜还甜。
在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。
既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。
长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米
宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不
高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。
长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米
宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体
高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。
长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米
宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。
高:0。3厘米
最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米
经过这次,我终于享受到写数学小论文的快乐。
我的数学成绩一向很好,素有“数学小神童”之称,我也常常引以为豪。
这天,我要去看电影,爸爸不同意,两人争执很久,最后爸爸说:?好,如果解决了我的问题,我就同意你去看电影!我想:为了看电影,花费点脑细胞,值!何况我的成绩很好,随爸爸什么问题,我解决的可能性还是很大的。于是,我信心十足地说:请出题!
题目是这样的,一辆货车去山里运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。这几天中有几天晴天,几天雨天?
我思索片刻,根据平均每天运14次,运了112次,可以列式112÷14=8(天),算出运了8天,假如这8天全是晴天,就能运20×8=160(次),比原来112次多运了160-112=48(次),晴天多一天,就多运20-12=8(次),一共多运了48次,就有48÷8=6(天)雨天被当成了晴天,实际晴天就有8-6=2(天)。我又验证了一下:20×2+12×6=112(次)。
于是,我把思路讲给爸爸听,爸爸听了直点头。
我得意地说:?假如全是雨天我也会做:[112-12×(112÷4)]÷(20-12)=2(天),这是晴天天数,雨天用112÷4-2=6(天)?。
爸爸看到我的思路如此清晰,脸上挂满了笑容,我见此情景撒腿就向电影院跑去。
在一个遥远的森林里,有许许多多友善而又可爱的小动物幸福快乐的生活着。可是因为一个入侵者,打破了这个宁静。那是一只大灰狼,它掠夺这小动物们的食物,于是,小动物们决定在夜里离开这个地方,去到河对岸,开始新的生活。
但是在渡河时,他们遇到了一个大麻烦。因为他们有八只动物,可是只有小狗会划船,但是岸上只有一只船,而且这只船只能载三只动物。小动物们都不知如何是好,这时,小动物中的智多星——小猩猩,想到了方法。已知小狗的划船速度为每分钟10千米,这条河宽36千米,为了最快速地让所有动物都安全抵达对岸,先让小狗把猫妹妹和狐狸奶奶载到对岸,再回来,可因为在过去时,受到了大灰狼的帮凶——鳄鱼,的影响,速度降到每分钟6千米,而又因为船上的重量减轻了,所以速度提升原来速度的百分之二十。于是这一个来回就耗费了9分钟。这八只动物已有两只上了岸,还有一只负责划船,所以说仅剩下五只动物。五除以二等于二余一,那么1+2=3(次),小狗需要划三次来回,加一次去。那么,三成九加六等于三十三分钟。他们仅需要三十三分钟,而大灰狼追到这里需要四十分钟,小动物们可以安全到达对岸。
听完了小猩猩分析,小动物们顿时燃起了希望,他们按照小猩猩说的方法去做,果不其然,他们都安全地渡过了河。看着大灰狼在河对岸急的抓狂,小动物们既对自己能够顺利渡河而庆幸,也对小猩猩的智慧和冷静发出由衷的赞叹。所以说,学好数学是一件多么重要的事呀,这个看似十分死板的学科,说不定可以在关键时刻可以就自己,或别人一命。
关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。
解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
3。设吉普车用的时间为x小时。
根据题意得:x+15=1。5x
前言
在数学里有着许多解不开的秘密,在数学里也有着让人眼花缭乱的事情!
问题
为什么说数学起源于结绳记数和土地丈量?
为什么世界各国都把数学列为中小学的必修课?
研究资料
为什么说数学起源于结绳记数和土地丈量?
这种对于土地的测量,最终产生了几何学。实际上,几何学本来就是“土地测量”的意思。
数学就是从“结绳记数”和“土地测量”开始的。距今两千多年前,在欧洲东南部生活的古希腊人,继承和发展了这些数学知识,并将数学发展成为一门科学。古希腊文明毁灭后,阿拉伯人将他们的文化保存下来并加以发展,后来又传回欧洲,数学重新得到繁荣,并最终导致了近代数学的创立。
为什么世界各国都把数学列为中小学的必修课?
数学和语文、外语在中小学课程中并称为三大主课,世界各国都是一样,从小学一年级到高中三年级的每个年级都有数学课。为什么在世界各国,数学都被列为中小学的必修课呢?
首先,和语文、英语一样,数学也是语言。数学是科学的语言,它由数字、符号、公式、图像、概念、命题和论证等构成,简练地表达了世界万物间的数量关系和空间中的位置关系。不懂数学,就无法理解科学。其次,数学能够发展人的理性思维。其三,数学的用途广泛,在个人、国家和社会的各种活动中都发挥着重要的作用。所以,我们应该从小学数学。这就是数学!
启发
原来,数学在世界上有着那么重要的关系,假如没有了数学,人们就不会记数,譬如:做了多少件衣服,买(卖)东西买(卖)了多少钱,等等。以后我一定要学好数学,长大为人们做出伟大的贡献!
大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。
我的肚子莫名其妙地奏起了狂响曲,“好饿啊――”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!
于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。
妈妈说,外公家养的两只母狗“格格”和“花花”最近一前一后生了两只小狗,于是我缠着妈妈带我去看。
星期天,我们来到了外公家,看到了这2只小狗,它们都非常有特点。一只长得胖嘟嘟的,象个小肉球,灰色的皮毛在太阳光的照耀下闪闪发光;另一只则长得比较“秀气”,浑身雪白,象穿了一件洁白的外衣,依偎在“狗”妈妈的怀里,好可爱哦!根据出生的时间和颜色,外公分别给它们取名为老大灰灰,老二白白。一到“狗屋”旁,我就被调皮可爱的小狗们吸引住了,全然不觉外公已经来到我的身边。外公说:“媛媛,你快要上四年级了,今天外公考你个问题,看你能否答出来?”“没问题!”我自信地回答。外公指着小狗说:“这2只小狗出生的日期非常有趣,老大和老二出生在相邻月份的1号,这两个1号分别是星期三和星期四,你知道是哪两个月的1号吗?”咋一听,这个问题挺难的,但不服输的我还是积极动起脑来,我不由联系起三年级时学过的年月日知识:由相邻两个月的1号是星期几,如果只差一天,说明第一个月的天数除以7余1天,哪个月的天数是这样的呢?哦,有了,29除以7余1天,一年中只有二月份有可能出现29天,由此可以断定老大、老二分别出生在二月、三月的1号。
我把想法告诉了外公,外公高兴地夸我真聪明,那2只可爱的小狗好象也为我猜出了它们的生日而欢快地跳来跳去呢!
星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”
我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。
我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的`道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。
我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。
但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。
那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。
今天,数学老师在课上给同学们发了一张卷子,卷子上所有的算式都只有两个共同的特点,那就是都是乘法,第二点,也就是最重要的一点:其中的一个乘数都是由9组成的。然后,老师平淡的说了一句同学们习以为常的话:“请同学们把这张卷子写完。”说完这句话后,老师清了清嗓子,接着说:“大家要在五分钟内完成哟!”她话音刚落,全班所有的同学们都惊讶的张大了嘴巴,仿佛能装下十个鸡蛋,因为我们要在五分钟内完成三十道乘法计算是不可能的,就算是被我们公认的“计算高手”也倒抽了一口凉气。但事不宜迟,时间毕竟不等人,大家必须争分多秒,所以都拿起笔来进行计算。
五分钟后,这三十道令人望而生畏的乘法计算全班所有的同学竟没有一个同学做完。这时老师开口了:“大家先找找所有算式的规律。”大家都不知道老师葫芦里到底卖的什么药,但是都积极的开始找规律。几分钟后,同学们都只发现了一个规律——一个乘数的是由九组成的。但老师却若有所思的望着我们。“难道还有别的规律吗?”我疑惑的想。就在这时,老师又说:“其实,我们可以以9999×5846=58454154这道题为例,大家可以发现积中的5845其实就是5846减去1得到的,那么我们就可以得出积前面的几位是由不是9组成的乘数减去一而得到的。”我看了看,发现果真如此。“而后面的数是由9组成的那个数减去另一个乘数减一的差而得到的。最后再把两次得到的数放在一起就得到了最终的积。但是这种方法只能在一个乘数比9组成的乘数小时才行的通。”
今天,我们又学到了一个妙招——吠陀数学中的关于九的乘法算式。
大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
270 浏览 6 回答
95 浏览 5 回答
95 浏览 5 回答
138 浏览 4 回答
351 浏览 6 回答
300 浏览 3 回答
142 浏览 4 回答
193 浏览 4 回答
233 浏览 5 回答
335 浏览 2 回答
80 浏览 3 回答
298 浏览 6 回答
114 浏览 3 回答
269 浏览 6 回答
317 浏览 4 回答