电镀重金属污泥不能随意排放,回收集中处理利用,自己处理不了给电镀园区帮你处理……
先脱水干燥处理,目前的回转窑就可以解决,而后进行离析法处理,离析法处理难选氧化铜矿(铜2-3%)已有应用报道,这样可以选矿得到铜镍精矿。 其中比较关键的是铬在离析处理过程中的物态变化,即如果其变成6价,则选矿过程中会造成水污染而且难处理,因此离析过程中铬的变化决定了其技术可行性。 另外需要进一步验证的是相关技术指标如回收率、精矿富集比等和成本如燃料、辅助材料消耗等。如成本控制在400-500元/吨以下估计可以接受。 再者离析法一次性投资较大,需要形成规模化。离析-浮选法是一种火法化学处理与浮选相结合的方法。例如难选氧化铜矿石的离析-浮选就是将矿石破碎到一定的粒度以后,混以少量的食盐(0。1-1。0%)和煤粉(0。5-2。0%),隔氧加热至900度左右,矿石中的铜便以金属状态在碳粒表面析出,将焙砂隔氧冷却后经磨矿进行浮选,即得铜精矿。 离析-浮选法最大的优点是能解决那些不能用常规选矿方法处理的矿石,它可以综合回收矿石中的有用金属。例如铜矿石中,当矿石中含有大量的硅孔雀石、赤铜矿及结合铜时,或是含有大量的矿泥时,这类矿石用浮选法往往指标很低,而用离析法则是比较有效的。离析法还能处理氧化铜矿石与硫化铜矿石的混合矿石,并能综合回收金、银、铁等有用金属。此外,金、银、镍、铝、钴、锑、钯、铋、锡等几种金属的化合物是易于还原的并且易于生成挥发性的氯化物,也适应于用离析法处理。 离析法的缺点是成本较高,基建投资较大,生产费用也较高。估计离析法的基建投资约为同样能力浮选厂的两倍,生产费用也要高2~3倍。所以用离析法处理难选的氧化铜矿石时,认为原矿中的铜品位应大于2%方能得到较好的经济效果。所以离析法仅用于解决那些不能用其他方法处理的矿石。因此在采用此法之前,应对处理的矿石作全面的研究,若能用其他方法处理,就不宜用离析法。
电镀污泥是电镀废水处理过程中产生的排放物,其中含有大量的铬、镉、镍、锌等有毒重金属,成分十分复杂。在我国《国家危险废物名录》(环发[1998]89号)所列出的47类危险废物中,电镀污泥占了其中的7大类,是一种典型的危险废物。目前,由于我国电镀行业存在厂点多、规模小、装备水平低及污染治理水平低等诸多问题,大部分电镀污泥仍只是进行简单的土地填埋,甚至随意堆放,对环境造成了严重污染[1]。因此,如何采取有效的技术处理处置电镀污泥,并实现其稳定化、无害化和资源化,一直都是国内外的研究重点。 本文综述了国内外电镀污泥处理技术的研究进展。 1 电镀污泥的固化/稳定化技术 目前,电镀污泥的固化/稳定化研究主要集中在固化块体稳定化过程的机理和微观机制等方面。Roy等[2]以普通硅酸盐水泥作为固化剂,系统地研究了含铜电镀污泥与干扰物质硝酸铜的加入对水泥水化产物长期变化行为的影响,发现硝酸铜与含铜电镀污泥对水泥水化产物的结晶性、孔隙度、重金属的形态及pH等微量化学和微结构特征都有重要的影响,如固化体的pH随硝酸铜添加量的增加而呈明显的下降趋势,孔隙度则随硝酸铜添加量的增加而增大。Asavapisit等[3]研究了水泥、水泥和粉煤灰固化系统对电镀污泥的固化作用,分析了固化体的抗压强度、淋滤特性及微结构等的变化特性,发现电镀污泥能明显降低两系统最终固化块体的抗压强度,原因是覆盖在胶凝材料表面上的电镀污泥抑制了固化系统的水化作用,但粉煤灰的加入不仅能使这种抑制作用最小化,而且还能降低固化体中铬的浸出率,原因可能是粉煤灰部分取代高碱度的水泥后,使混合系统的碱度降到了有利于重金属氢氧化物稳定化的水平。Sophia等[4]认为,单一水泥处理电镀污泥的抗压强度优于水泥和粉煤灰混合系统,但只要水泥与粉煤灰的配比适宜,同样能满足对铬的固化需要。而固化过程中粉煤灰的使用对铜的长期稳定性并无益处[5]。 添加剂的使用能改善电镀污泥的固化效果[6]。在电镀污泥的固化处置中,根据有害物质的性质,加入适当的添加剂,可提高固化效果,降低有害物质的溶出率,节约水泥用量,增加固化块强度。在以水泥为固化剂的固化法中使用的添加剂种类繁多,作用也不同,常见的有活性氧化铝、硅酸钠、硫酸钙、碳酸钠、活性谷壳灰等[6]。 2 电镀污泥的热化学处理技术 热化学处理技术(如焚烧、离子电弧及微波等)是在高温条件下对废物进行分解,使其中的某些剧毒成分毒性降低,实现快速、显著地减容,并对废物的有用成分加以利用。近年来,利用热化学处理技术实现对危险废物电镀污泥的预处理或安全处置正引起人们的重视[7~9]。 目前,有关电镀污泥热化学处理技术的研究,以对在焚烧处理电镀污泥过程中重金属的迁移特性等问题的研究比较突出。Espinosa等[10]对电镀污泥在炉内焚烧过程的热特性及其中重金属的迁移规律进行了研究,发现焚烧能有效富集电镀污泥中的铬,灰渣中铬的残留率高达99%以上,而在焚烧过程中,绝大部分污泥组分以CO2,H2O,SO2等形态散失,因此减容减重效果非常明显,减重可达34%。Barros等[11]利用水泥回转窑对混合焚烧电镀污泥过程进行了研究,分析了添加氯化物(KCl,NaCl等)对电镀污泥中Cr2O3和NiO迁移规律的影响,认为氯化物对Cr2O3和NiO在焚烧灰渣中的残留情况几乎没有任何影响,焚烧过程中Cr2O3和NiO都能被有效地固化在焚烧残渣中。刘刚等[12]利用管式炉模拟焚烧炉研究电镀污泥的热处置特性时,分析了铬、锌、铅、铜等多种重金属的迁移特性,认为焚烧温度在700℃以下时,污泥中的水分、有机质和挥发分就能被很好地去除,且高温能有效抑制污泥中重金属的浸出,但这种抑制对各种重金属的影响各不相同,如镍是不挥发性重金属,在焚烧灰渣中的残留率为100%,铬在灰渣中的残留率也高达97%以上,而锌、铅、铜的析出率则随焚烧温度的升高而有不同程度的增大。 在离子电弧、微波等其他热化学处理研究方面,Ramachandran等[13]用直流等离子电弧在不同气氛下对电镀污泥进行处理,并对处理后的残渣及处理过程中产生的粉末进行了研究,认为此法在实现铜、铬等有价金属回收的同时可将残渣转化成稳定的惰性熔渣。Gan等[14]通过微波辐射对电镀污泥进行了解毒和重金属固化实验,发现微波辐射处理对电镀污泥中重金属离子的固化效果显著,原因可能是在高温干燥与电磁波的共同作用下,有利于重金属离子同双极聚合分子之间发生强烈的相互作用而结合在一起,而经微波处理的电镀污泥具有粒度细、比表面积高、易结团等特性。 此外,热化学处理有利于降低电镀污泥中铬的毒性。Ku等[15]研究了高温热处理电镀污泥过程中铬的毒性价态变化,认为高温热处理能将铬(Ⅵ)转化成铬(Ⅲ),且温度越高转化效果越明显;在经高温处理的电镀污泥中,主要以铬(Ⅲ)为主。Cheng等[16]将电镀污泥与黏土的混合物分别在900℃和1100℃的电炉中热养护4h后,对其中铬的价态进行了分析,发现在经900℃热养护处理的混合物中,铬(Ⅵ)占有绝对优势,而经1100℃热养护处理的混合物中,铬则主要以铬(Ⅲ)存在。 3 电镀污泥中有价金属的回收技术 酸浸法和氨浸法 酸浸法是固体废物浸出法中应用最广泛的一种方法[17],具体采用何种酸进行浸取需根据固体废物的性质而定。对电镀、铸造、冶炼等工业废物的处理而言,硫酸是一种最有效的浸取试剂[17],因其具有价格便宜、挥发性小、不易分解等特点而被广泛使用[18]。Silva等[19]以磷酸二异辛酯为萃取剂,对电镀污泥进行了硫酸浸取回收镍、锌的研究实验。Vegli惏等[20]的研究显示,硫酸对铜、镍的浸出率可达95%~100%,而在电解法回收过程中,二者的回收率也高达94%~99%。 也可用其他酸性提取剂(如酸性硫脲)来浸取电镀污泥中的重金属[21]。Paula等[22]利用廉价工业盐酸浸取电镀污泥中的铬,浸取时将5mL工业盐酸(纯度为,质量浓度为)添加到大约1g预制好的试样中,然后在150r/min的摇床上震荡30min,铬的浸出率高达。 氨浸法提取金属的技术虽然有一定的历史[23],但与酸浸法相比,采用氨浸法处理电镀污泥的研究报道相对较少,且以国内研究报道居多。氨浸法一般采用氨水溶液作浸取剂,原因是氨水具有碱度适中、使用方便、可回收使用等优点[23]。采用氨络合分组浸出-蒸氨-水解渣硫酸浸出-溶剂萃取-金属盐结晶回收工艺,可从电镀污泥中回收绝大部分有价金属,铜、锌、镍、铬、铁的总回收率分别大于93%,91%,88%,98%,99%[24]。针对适于从氨浸液体系中分离铜的萃取剂难以选择的问题,祝万鹏等[25]开发了一种名为N510的萃取剂,该萃取剂在煤油-H2SO4体系中能有效地回收电镀污泥氨浸液中的Cu2+,回收率高达99%。王浩东等[26]对氨浸法回收电镀污泥中镍的研究表明,含镍污泥经氧化焙烧后得焙砂,用NH3质量分数7%、CO2质量分数5%~7%的氨水对焙砂进行充氧搅拌浸出,得到含Ni(NH3)4CO3的溶液,然后对此溶液进行蒸发处理,使Ni(NH3)4CO3转化为NiCO3·3Ni(OH)2,再于800℃锻烧即可得商品氧化镍粉。 酸浸或氨浸处理电镀污泥时,有价金属的总回收率及同其他杂质分离的难易程度,主要受浸取过程中有价金属的浸出率和浸取液对有价金属和杂质的选择性控制[23]。酸浸法的主要特点是对铜、锌、镍等有价金属的浸取效果较好,但对杂质的选择性较低,特别是对铬、铁等杂质的选择性较差;而氨浸法则对铬、铁等杂质具有较高的选择性,但对铜、锌、镍等的浸出率较低[8]。 生物浸取法 生物浸取法的主要原理是,利用化能自养型嗜酸性硫杆菌的生物产酸作用,将难溶性的重金属从固相溶出而进入液相成为可溶性的金属离子,再采用适当的方法从浸取液中加以回收,作用机理比较复杂,包括微生物的生长代谢、吸附,以及转化等[27]。就目前能收集到的文献来看,利用生物浸取法来处理电镀污泥的研究报道还比较少[28],原因是电镀污泥中高含量的重金属对微生物的毒害作用大大限制了该技术在这一领域的应用[29]。因此,如何降低电镀污泥中高含量的重金属对微生物的毒害作用,以及如何培养出适应性强、治废效率高的菌种,仍然是生物浸取法所面临的一大难题[30],但也是解决该技术在该领域应用的关键。 熔炼法和焙烧浸取法 熔炼法处理电镀污泥主要以回收其中的铜、镍为目的[31]。熔炼法以煤炭、焦炭为燃料和还原物质,辅料有铁矿石、铜矿石、石灰石等。熔炼以铜为主的污泥时,炉温在1300℃以上,熔出的铜称为冰铜;熔炼以镍为主的污泥时,炉温在1455℃以上,熔出的镍称为粗镍。冰铜和粗镍可直接用电解法进行分离回收。炉渣一般作建材原料。 焙烧浸取法的原理是先利用高温焙烧预处理污泥中的杂质,然后用酸、水等介质提取焙烧产物中的有价金属[7,8]。用黄铁矿废料作酸化原料,将其与电镀污泥混合后进行焙烧,然后在室温下用去离子水对焙烧产物进行浸取分离,锌、镍、铜的回收率分别为60%,43%,50%[8]。 4 电镀污泥的材料化技术 电镀污泥的材料化技术是指利用电镀污泥为原料或辅料生产建筑材料或其他材料的过程。Ract[32]开展了以电镀污泥部分取代水泥原料生产水泥的实验,认为即使是含铬电镀污泥在原料中的加入量高达2%(干基质量分数)的情况下,水泥烧结过程也能正常进行,而且烧结产物中铬的残留率高达。Magalh es等[33]分析了影响电镀污泥与黏土混合物烧制陶瓷的因素,认为电镀污泥的物化性质、预制电镀污泥与黏土混合物时的搅拌时间,是决定陶瓷质量优劣的主导因素,如原始电镀污泥中重金属的种类(如铝、锌、镍等)和含量明显地决定着电镀污泥及其与黏土混合物的淋滤特性,而预制电镀污泥与黏土混合物时,剧烈或长时间的搅拌作用则有利于混合物的均匀化和烧结反应的进行。此外,将电镀污泥与海滩淤泥混合可烧制出达标的陶粒[34]。 5 结语 电镀污泥的处理一直是国内外的研究重点,虽然有关人员在该领域已经开展了很多研究并取得了一定成果,但仍存在许多急需解决的问题,如传统的以水泥为主的固化技术、以回收有价金属为目的的浸取法存在对环境二次污染的风险等,要解决这些问题必须采取新的研究途径。近年来,利用热化学处理技术实现对电镀污泥的预处理或安全处置为未来电镀污泥的处理提供了更广阔的发展空间和前景。新近的研究显示,热化学处理技术在电镀污泥的减量化、资源化及无害化方面都有明显的优势,因此,必将成为未来电镀污泥处理领域的一个重要研究方向。 然而,由于热化学处理技术在电镀污泥处理方面的应用与研究还比较少,许多问题还需进一步探索,如对热化学处理电镀污泥过程中重金属的迁移特性、重金属在灰渣中的残留特性、热化学处理过程中重金属的析出特性及蒸发特性等都需要
我最近也要在做的,我们讨论下:电镀废水文献综述设计要求:(1)水质:铜离子30mg/L,六价铬25mg/L,锌离子12mg/L,镍离子16mg/L,氰8mg/L,其他微量,铅等,(2)处理要求:执行《污水综合排放标准》(GB8978-1996)一级标中文摘要: 电镀行业的废水量在整个工业系统废水中虽然所占比重较小,但电镀废水含有氰化物、酸、碱以及六价铬、铜、镍、锌、镉等金属污染物,对环境有严重的危害,因此,国内外对这类废水积极的展开了治理方法的研究与应用。本文在吸取微电解和生物吸附处理重金属离子废水的优点以及已有实验对单一重金属离子废水进行处理的基础上,确定了使用微电解—生物膜复合工艺对实际电镀废水进行处理。关键词:含铬废水 处理 还原英文摘要: The plating wastewater with cyanide, acid, alkali and heavy metal ions such as chromium, copper, nickel, zinc, cadmium etc. has appeared to be environmental serious damage despite its small quantity proportion in all through the industrial wastewater. For the moment, the research and application of the wastewater treatment has commenced forwardly in domestic and overseas. In this paper, micro-electrolysis and biological lessons Absorption of Heavy Metal Ions wastewater treatment, as well as have the experimental advantage of heavy metal ions on a single wastewater treatment on the basis of determining the use of micro-electrolysis – biofilm composite plating process on the actual wastewater : Electroplating wastewater, treatment,restore铬在水环境中的存在形态主要是三价铬(Cr(Ⅲ)和六价铬(Cr(Ⅵ)),它们在水体中的迁移转化有一定的规律性。Cr(Ⅲ)主要被吸附在固体物质上面而存在于沉积物中;Cr(Ⅵ)多溶于水中,而且是稳定的,只有在厌氧的情况下,才还原为Cr(Ⅲ)。铬的毒性与其存在状态有关,通常认为Cr(Ⅵ)的毒性远比Cr(Ⅲ)大[1]。在电镀含铬废水中,Cr(Ⅵ)是主要的特征污染物。1 Cr(Ⅵ)污染的来源Cr(Ⅵ)化合物,是冶金工业、金属加工电镀、制革、颜料、纺织品生产、印染以及化工等行业必不可少的原料,这些工业分布点多面广,每天排放出大量含铬废水,这些废水的排放可造成水体和土壤的污染直接影响人类饮用水的卫生状况。WHO所规定的饮用水中Cr(Ⅵ)的含量标准为1~2μmol/L[2],国内有不少地方的饮用水由于受到工业废水的污染或因地质背景所致使生活饮用水中Cr(Ⅵ)含量严重超标。2 含Cr(VI)污水的处理技术通过查资料,电镀工业含铬废水的处理最常用的方法有还原法、电解法,工艺成熟,运行效果好。但是近来又有很多其他的方法被研究出来,综合比较会发现这些方法也各有优缺点。作为新方法,他们自有借鉴之处。还原沉淀法化学沉淀法处理电镀含Cr(Ⅵ)废水,一种是通过还原法,把Cr(Ⅵ)还原成Cr(Ⅲ),然后沉淀;另一种是用钡盐,使铬酸根生成铬酸钡沉淀。袁智斌[3]通过建调节池,使含铬废水经调节池后进入还原池,在还原池通过加H2SO4控制pH值在~3投加NaHSO3,将Cr(Ⅵ)还原成Cr(Ⅲ),并在反应池通过投加NaOH形成Cr(OH)3沉淀。窦秀冬等[4]通过研究比较,发现通过还原-沉淀法Cr去除率均达到99%以上,MgO的铬泥沉降性能非常优越,NaOH和CaO中掺入部分MgO可以较大地改善所生成铬泥的性能,最佳投药量以投加后pH≈为宜。郑新卿[5]对还原-沉淀法处理含铬废水工艺步骤、固-液分离后的上清液和沉降污泥Cr(Ⅵ)含量以及Cr(Ⅲ)-Cr(Ⅵ)之间的形态转化相关性进行研究和分析,提出要特别注意控制含铬污水中铬反弹及全过程处理的完整性。电解法沉淀过滤1.工艺流程概况电镀含铬废水首先经过格栅去除较大颗粒的悬浮物后自流至调节池, 均衡水量水质, 然后由泵提升至电解槽电解,在电解过程中阳极铁板溶解成亚铁离子,在酸性条件下亚铁离子将六价铬离子还原成三价铬离子,同时由于阴极板上析出氢气,使废水pH 值逐步上升,最后呈中性。此时Cr3+ 、Fe3+ 都以氢氧化物沉淀析出,电解后的出水首先经过初沉池,然后连续通过(废水自上而下)两级沉淀过滤池。一级过滤池内有填料:木炭、焦炭、炉渣;二级过滤池内有填料:无烟煤、石英砂。污水中沉淀物由过滤池填料过滤、吸附,出水流入排水检查井。而后通过泵进入循环水池作为冷却用水。过滤用的木炭、焦炭、无烟煤、炉渣定期收集在锅炉房掺烧。2.主要设备调节池1座;初沉池1座、沉淀过滤池2座;循环水池1 座;电源控制柜、电解槽、电解电源、电解电压1套;水泵5台。3.结果与分析某电镀厂电镀废水处理设备在正常工况条件下,间隔不同的时间多次取样。电镀含铬废水采用电解法沉淀过滤工艺处理后全部回用,过滤池内填料定期集中于锅炉房掺烧,达到了综合治理电镀含铬废水的目的。该处理技术虽然运行可靠,操作简单,但应注意几个方面:a)需要定期更换极板;b)在一定的酸性介质中,氢氧化铬有被重新溶解的可能;c)沉淀过滤池内的填料必须定期处理,焚烧彻底,否则会引起二次污染。由此可见,对处理设施加强管理非常重要。4.结论1)该处理工艺对电镀含铬废水治理彻底,过滤池内填料定期统一处理,不会引起二次污染;处理后清水全部回用,可节省水资源,具有明显的经济效益。2)该工艺投资较小,技术成熟,运行稳定可靠,操作方便,易于管理,适应于不同规模的电镀生产企业。吸附法吸附法是利用多孔性固态物质吸附水中污染物来处理废水的一种常用方法。吸附法的关键技术是吸附剂的选择,目前工业应用中最常用的吸附剂是活性炭,活性炭吸附容量大,对Cr(Ⅵ)阳离子也具有较强还原作用[6],用20%硫酸溶液浸泡后,Cr(Ⅵ)去除率达,易于再生[7]。Valix等[8]研究了活性炭表面的杂环原子(如S、N、O、H等)以及活性炭的结构特性对吸附Cr(Ⅵ)的影响,认为杂环原子辅助活性炭起还原剂作用,提高活性炭吸附铬酸根离子,此外提高活性炭的总表面积有助于提高吸附容量和取出Cr(Ⅵ)。活性炭虽然性能优良,但我国活性炭产量少,价格较昂贵,限制了它们在一些经济不发达地区和一些行业的使用,因此,又开发出来了许多类型的吸附剂,一类是利用工农业废弃物做吸附剂,以废治废,不仅吸附效果好,还具有价格低,来源广的优点。李鑫金等[9]用活化赤泥处理含铬废水,处理含Cr(III)浓度在300 mg/L以下废水,去除率可达99%以上;处理含Cr(Ⅵ)废水,先加入硫酸亚铁还原,同样可使Cr(Ⅵ) 浓度在300 mg/L以下废水处理后达到国家标准。马少健等[10]利用钢渣吸附Cr(III),去除率可达99%以上,同时可去除废水中94%以上的Pb2+。蒋艳红等[11]研究了高炉渣对铬离子的吸附特性,在pH4~12范围内高炉渣对Cr(III)去除率可达97%以上,对Cr(Ⅵ)需加硫酸亚铁还原再处理。Hu等[12]研究了磁赤铁矿纳米颗粒吸附Cr(Ⅵ),吸附容量可与活性炭相比,不受其他共存离子的影响,易于再生,可用于回收废水中的Cr(Ⅵ)。程永华等[13]研究了壳聚糖高效吸附含铬废水,在强酸下壳聚糖对Cr(Ⅵ)吸附速度较快,在弱酸下壳聚糖对Cr(Ⅲ)吸附有利,通过控制pH值分段吸附,可有效除去废水中的铬含量。另一类是用改性材料作为吸附剂,由于一些天然材料(或废弃物)的吸附效果不理想,许多学者就对它们进行改性,目前有许多这方面的报道。韩毅等[14]以氯化铁为改性剂制得改性赤泥,任乃林等[15]用木屑经酸化、与8-羟基喹啉金属络合剂浸泡处理制得改性木屑,马小隆等[16]用无机酸对钙基膨润土进行活化改性,Li等[17]用氯化铁改性汽爆秸秆吸附Cr(Ⅲ),隋国舜等[18]研究了低聚合羟基铁离子-蛭石复合体对Cr(Ⅵ)的吸附,结果都表明了改性后的吸附剂对Cr(Ⅵ)吸附能力明显提高,废水中Cr(Ⅵ)去除能力更强。其他国内外含铬废水处理方法的研究进展 生物法生物法治理含铬废水,国内外都是近年来开始的。生物法是治理电镀废水的高新生物技术,适用于大、中、小型电镀厂的废水处理,具有重大的实用价值,易于推广。国内外对SRB菌(硫酸盐还原菌)、SR系列复合功能菌、SR复合能菌、脱硫孤菌、脱色杆菌()、生枝动胶菌(Zoolocaramigera)、酵母菌、含糊假单胞菌、荧光假单胞菌、乳链球菌、阴沟肠杆菌、铬酸盐还原菌等进行研究,从过去的单一菌种到现在多菌种的联合使用,使废水的处理从此走向清洁、无污染的处理道路。将电镀废水与其它工业废弃物及人类粪便一起混合,用石灰作为凝结剂,然后进行化学—凝结—沉积处理。研究表明,与活性的淤泥混合的生物处理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-.已用于埃及轻型车辆公司的含铬废水的处理。生物法处理电镀废水技术,是依靠人工培养的功能菌,它具有静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。该法操作简单,设备安全可靠,排放水用于培菌及其它使用;并且污泥量少,污泥中金属回收利用;实现了清洁生产、无污水和废渣排放。投资少,能耗低,运行费用少。 膜分离法膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。别的方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。反渗透法是在一定的外加压力下,通过溶剂的扩散,从而实现分离。超滤法也是在静压差推动下进行溶质分离的膜过程。液膜包括无载体液膜、有载体液膜、含浸型液膜等。液膜分散于电镀废水时,流动载体在膜外相界面有选择地络合重金属离子,然后在液膜内扩散,在膜内界面上解络,重金属离子进入膜内相得到富集,流动载体返回膜外相界面,如此过程不断进行,废水得到净化。膜分离法的优点:能量转化率高,装置简单,操作容易,易控制、分离效率高。但投资大,运行费用高,薄膜的寿命短。主要用于回收附加值高的物质,如金等。电镀工业漂洗水的回收是电渗析在废液处理方面的主要应用,水和金属离子可达到全部循环利用,整个过程可在高温和更广的pH值条件下运行,且回收液浓度可大大提高,缺点为仅能用于回收离子组分。液膜法处理含铬废水,离子载体为TBP(磷酸三丁酯),Span80为膜稳定剂,工艺操作方便,设备简单,原料价廉易得。也有选用非离子载体,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性剂,选用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶剂,分离过程分为:萃取、反萃等步骤。近来,微滤也有用于处理含重金属废水,可去除金属电镀等工业废水中有毒的重金属如镉、铬等。 黄原酸酯法70年代,美国研制成新型不溶重金属离子去除剂ISX,使用方便,水处理费用低。ISX不仅能脱除多种重金属离子,而且在酸性条件下能将Cr6+还原为Cr3+,但稳定性差。不溶性淀粉黄原酸酯脱除铬的效果好,脱除率>99%,残渣稳定,不会引起二次污染。钟长庚等人用稻草代替淀粉制成稻草黄原酸酯,处理含铬废水,铬的脱除率高,很容易达到排放标准。研究者认为稻草黄原酸酯脱除铬是黄原酸铬盐、氢氧化铬通过沉淀、吸附几种过程共同起作用,但黄原酸铬盐起主要作用。此法成本低,反应迅速,操作简单,无二次污染。 光催化法光催化法是近年来在处理水中污染物方面迅速发展起来的新方法,特别是利用半导体作催化剂处理水中有机污染物方面已有许多报道。以半导体氧化物(ZnO/TiO2)为催化剂,利用太阳光光源对电镀含铬废水加以处理,经90min太阳光照(),使六价铬还原成三价铬,再以氢氧化铬形式除去三价铬,铬的去除率达99%以上。 槽边循环化学漂洗这一技术由美国ERG/Lancy公司和英国的Ef fluentTreatmentLancy公司开发,故也叫Lancy法。它是在电镀生产线后设回收槽、化学循环漂洗槽及水循环漂洗槽各一个,处理槽设在车间外面。镀件在化学循环漂洗槽中经低浓度的还原剂(亚硫酸氢钠或水合肼)漂洗,使90%的带出液被还原,然后镀件进入水漂洗槽,而化学漂洗后的溶液则连续流回处理槽,不断循环。加碱沉淀系在处理槽中进行,它的排泥周期很长。广州电器科学研究所开发了分别适用于各种电镀废水的三大类体系的槽边循环化学漂洗处理工艺,水回用率高达95%、具有投药少、污泥少且纯度高等优点。有时,用槽边循环和车间循环相结合。 水泥基固化法处理中和废渣对于暂时无法处理的有毒废物,可以采用固化技术,将有害的危险物转变为非危险物的最终处置办法。这样,可避免废渣的有毒离子在自然条件下再次进入水体或土壤中,造成二次污染。当然,这样处理后的水泥固化块中的六价铬的浸出率是很低的。2、电镀含铬废液及污泥的综合利用由于电镀含铬老化废液有害物质含量高,成分复杂,在综合利用之前应对各种废液进行单独和分类处理。对于镀锌钝化液、铜钝化液及含磷酸的铝电解抛光液均用酸碱调节pH;对于阴离子交换树脂,只需将它变为Na2CrO4即可。 利用铬污泥生产红矾钠在高温碱性条件介质Na2CrO4中三价铬可被空气氧化为Na2Cr2O7,同时污泥中所含的铁、锌等转化为相应的可溶盐NaFeO2、Na2ZnO2.用水浸取碱熔体时,大部分铁分解为Fe(OH)3沉淀而除去。将滤液酸化至pH<4,Na2CrO4即转变为Na2Cr2O7,利用Na2SO4与Na2Cr2O7溶解度差异,分别结晶析出。采用高温碱性氧化铬污泥制红矾钠的条件是n(Na2CO3)∶n(Cr2O3)=∶,温度780℃,时间,铬的转化率在85%以上。 生产铬黄利用纯碱作沉淀剂去除电镀废液中的杂质金属离子,再利用净化后的电镀废液替代部分红矾钠生产铅铬黄。电镀液加入Na2CO3饱和液后,调整pH至~.进行过滤,滤液备用。在碱性条件下将滤渣中的Cr3+用H2O2氧化为Cr6+,再经过滤,滤液与上述滤液混合。将滤液与硝酸铅溶液和助剂,在50~60℃反应1h,然后经过滤、水洗,洗去氯根、硫酸根以及其它部分可溶性杂质,再经干燥粉碎即得成品铅铬黄。利用电镀废液生产铅铬黄,不仅解决了污染问题,而且使电镀废液中的铬得到了回收利用。据估算,按年处理电镀废液200t,年平均回收18t红矾钠,可实现年创收4万余元。效益可观。 生产液体铬鞣剂及皮革鞣剂碱式硫酸铬含铬废液先用氢氧化钠去除金属离子杂质,控制pH=~,然后过滤,滤液待用,污泥用铁氧体无害化处理。然后,在滤液中投加还原剂葡萄糖,使Na2Cr2O7还原为Cr(OH)SO4,在100℃条件下,进一步聚合,当碱度为40%时,分子式为4Cr(OH)(SO4)3,即为铬鞣剂。河北省无极县某皮革厂就是利用电镀含铬废水生产液体铬鞣剂。按每天生产5t液体铬鞣剂,每天可得利润为6000余元。可见利用含铬废液生产铬鞣剂的经济效益是十分显著的。另外,可将含铬的污泥与碳粉混合,在高温下煅烧,从而可制得金属铬。因为含铬污泥是电镀车间污泥的主要品种,根据电镀处理方法不同,污泥的回收利用也不同。电解法污泥:(1)做中温变换催化剂的原料;(2)做铁铬红颜料的原料。化学法的污泥:(1)回收氢氧化铬;(2)回收三氧化二铬抛光膏。铁氧体污泥做磁性材料的原料等等。3、结束语以上介绍的含铬废水的处理方法及其资源化利用,有的已经实现了工业化,有的尚处于实验室基础研究阶段。在实际使用过程中并不一定限定于上述的处理方法,也可将上述的几种处理方法一起使用。从环保角度出发,人们将摈弃传统的化学法,而选择微生物法、膜分离法等。微生物法将代表21世纪电镀含铬废水处理方法的发展趋势,可以预计在不久的将来,微生物法会得到更为广泛的应用。参考文献[1] 马广岳,施国新,徐勤松,等.、Cr3+胁迫对黑藻生理生化影响的比较研究[J].广西植物,24(2):161-165[2] Costa hazards of hexavalent chromate in our drinking water[J].Toxicol Appl Pharmacol,188(1):1-5[3] 袁智斌.2005.化学分类沉淀法处理铜箔废水的工程应用[J].铜业工程,4:23-25[4] 窦秀冬,方建德,郭振仁,等.2003.皮革废水除铬碱剂筛选[J].新疆环境保护,25(2):27-30[5] 郑新卿.2005.还原——固液法镀铬废水处理后Cr(Ⅵ)反弹成因与防治对策[J].中国环境管理,3:29-30[6] 王宝庆,陈亚雄,宁平.2002.活性炭水处理技术应用[J].云南环境科学,19(3):46-50[7] 李英杰,纪智玲,侯凤,等.2005.活性炭吸附法处理含铬废水的研究[J].沈阳化工学院学报,19(3):184-187[8] Valix M,Cheung W H,Zhang of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters[J].J Hazard Mater,2006,In press[9] 李鑫金,赵景联.2005.微波煅烧活化赤泥处理含铬废水的研究[J].轻金属,9:16-19[10] 马少健,刘盛余,胡治流,等.2004.钢渣吸附剂对铬和铅重金属离子的吸附特性研究[J].有色矿冶,20(4):57-59[11] 蒋艳红,马少健,廖芳艳.2005.高炉渣对铬离子的吸附特性研究[J].有色矿冶,21(s):155-156[12] Hu J,Chen G H,Lo I M and recovery of Cr(VI)from wastewater by maghemite nanoparticles[J].Water Res,39(18):4528-4536[13] 程永华,闫永胜,王智博,等.2005.壳聚糖高效吸附处理含铬废水的研究[J].华中科技大学学报(城市科学版),22(4):51-53[14] 韩毅,王京刚,唐明述.2005.用改性赤泥吸附废水中的六价铬[J].化工环保,25(2):132-136[15] 任乃林,黄俊盛,李红.2004.用改性木屑吸附处理含铬废水[J].广东化工,9/10:53-54 [16] 马小隆,刘晓明,宋吉勇.2005.膨润土的改性及其对废水中铬的吸附性能研究[J].能源环境保护,19(4):18-21[17] Li C,Chen H Z,Li Z removal of Cr(VI) by Fe-modified steam exploded wheat straw[J].Process Biochem,39(5):541–545[18] 隋国舜,廖立兵,胡鸿佳.2005.低聚合羟基铁离子-蛭石复合体吸附铬的实验研究[J].矿物岩石,25(3):131-136
266 浏览 6 回答
114 浏览 3 回答
286 浏览 3 回答
177 浏览 4 回答
177 浏览 5 回答
82 浏览 3 回答
290 浏览 7 回答
212 浏览 4 回答
270 浏览 2 回答
157 浏览 4 回答
353 浏览 4 回答
262 浏览 4 回答
164 浏览 6 回答
314 浏览 3 回答
296 浏览 3 回答