你们学校没有CNKI吗??那里面你要的文章用卡车装。
中文数据库有很多,中国期刊网,万方数据库,中国期刊网优秀博硕论文数据库,重庆维普系列数据库,超星图书馆等等都可以下到文献;英文的推荐Elsevier Science,个人觉得很好用,不过都要收费。医学期刊的据我所知只有一个数据库是免费的,但是可能神经生物学的文章不多。如果你只需要少量文献的话可以检索完以后用站内消息发给我,我帮你下载~
深度神经网络(DNNs)是 AI 领域的重要成果,但它的 “存在感” 已经不仅仅限于该领域。 一些前沿生物医学研究,也正被这一特别的概念所吸引。特别是计算神经科学家。 在以前所未有的任务性能彻底改变计算机视觉之后,相应的 DNNs 网络很快就被用以试着解释大脑信息处理的能力,并日益被用作灵长类动物大脑神经计算的建模框架。经过任务优化的深度神经网络,已经成为预测灵长类动物视觉皮层多个区域活动的最佳模型类型之一。 用神经网络模拟大脑或者试图让神经网络更像大脑正成为主流方向的当下,有研究小组却选择用神经生物学的方法重新审视计算机学界发明的DNNs。 而他们发现,诸如改变初始权重等情况就能改变网络的最终训练结果。这对使用单个网络来窥得生物神经信息处理机制的普遍做法提出了新的要求:如果没有将具有相同功能的深度神经网络具有的差异性纳入考虑的话,借助这类网络进行生物大脑运行机制建模将有可能出现一些随机的影响。要想尽量避免这种现象,从事 DNNs 研究的计算神经科学家,可能需要将他们的推论建立在多个网络实例组的基础上,即尝试去研究多个相同功能的神经网络的质心,以此克服随机影响。 而对于 AI 领域的研究者,团队也希望这种表征一致性的概念能帮助机器学习研究人员了解在不同任务性能水平下运行的深度神经网络之间的差异。 人工神经网络由被称为 “感知器”、相互连接的单元所建立,感知器则是生物神经元的简化数字模型。人工神经网络至少有两层感知器,一层用于输入层,另一层用于输出层。在输入和输出之间夹上一个或多个 “隐藏” 层,就得到了一个 “深层” 神经网络,这些层越多,网络越深。 深度神经网络可以通过训练来识别数据中的特征,就比如代表猫或狗图像的特征。训练包括使用一种算法来迭代地调整感知器之间的连接强度(权重系数),以便网络学会将给定的输入(图像的像素)与正确的标签(猫或狗)相关联。理想状况是,一旦经过训练,深度神经网络应该能够对它以前没有见过的同类型输入进行分类。 但在总体结构和功能上,深度神经网络还不能说是严格地模仿人类大脑,其中对神经元之间连接强度的调整反映了学习过程中的关联。 一些神经科学家常常指出深度神经网络与人脑相比存在的局限性:单个神经元处理信息的范围可能比 “失效” 的感知器更广,例如,深度神经网络经常依赖感知器之间被称为反向传播的通信方式,而这种通信方式似乎并不存在于人脑神经系统。 然而,计算神经科学家会持不同想法。有的时候,深度神经网络似乎是建模大脑的最佳选择。 例如,现有的计算机视觉系统已经受到我们所知的灵长类视觉系统的影响,尤其是在负责识别人、位置和事物的路径上,借鉴了一种被称为腹侧视觉流的机制。 对人类来说,腹侧神经通路从眼睛开始,然后进入丘脑的外侧膝状体,这是一种感觉信息的中继站。外侧膝状体连接到初级视觉皮层中称为 V1 的区域,在 V1 和 V4 的下游是区域 V2 和 V4,它们最终通向下颞叶皮层。非人类灵长类动物的大脑也有类似的结构(与之相应的背部视觉流是一条很大程度上独立的通道,用于处理看到运动和物体位置的信息)。 这里所体现的神经科学见解是,视觉信息处理的分层、分阶段推进的:早期阶段先处理视野中的低级特征(如边缘、轮廓、颜色和形状),而复杂的表征,如整个对象和面孔,将在之后由颞叶皮层接管。 如同人的大脑,每个 DNN 都有独特的连通性和表征特征,既然人的大脑会因为内部构造上的差异而导致有的人可能记忆力或者数学能力更强,那训练前初始设定不同的神经网络是否也会在训练过程中展现出性能上的不同呢? 换句话说,功能相同,但起始条件不同的神经网络间究竟有没有差异呢? 这个问题之所以关键,是因为它决定着科学家们应该在研究中怎样使用深度神经网络。 在之前 Nature 通讯发布的一篇论文中,由英国剑桥大学 MRC 认知及脑科学研究组、美国哥伦比亚大学 Zuckerman Institute 和荷兰拉德堡大学的 Donders 脑科学及认知与行为学研究中心的科学家组成的一支科研团队,正试图回答这个问题。论文题目为《Individual differences among deep neural network models》。 根据这篇论文,初始条件不同的深度神经网络,确实会随着训练进行而在表征上表现出越来越大的个体差异。 此前的研究主要是采用线性典范相关性分析(CCA,linear canonical correlation analysis)和 centered-kernel alignment(CKA)来比较神经网络间的内部网络表征差异。 这一次,该团队的研究采用的也是领域内常见的分析手法 —— 表征相似性分析(RSA,representational similarity analysis)。 该分析法源于神经科学的多变量分析方法,常被用于将计算模型生产的数据与真实的大脑数据进行比较,在原理上基于通过用 “双(或‘对’)” 反馈差异表示系统的内部刺激表征(Inner stimulus representation)的表征差异矩阵(RDMs,representational dissimilarity matrices),而所有双反馈组所组成的几何则能被用于表示高维刺激空间的几何排布。 两个系统如果在刺激表征上的特点相同(即表征差异矩阵的相似度高达一定数值),就被认为是拥有相似的系统表征。 表征差异矩阵的相似度计算在有不同维度和来源的源空间(source spaces)中进行,以避开定义 “系统间的映射网络”。本研究的在这方面上的一个特色就是,使用神经科学研究中常用的网络实例比较分析方法对网络间的表征相似度进行比较,这使得研究结果可被直接用于神经科学研究常用的模型。 最终,对比的结果显示,仅在起始随机种子上存在不同的神经网络间存在明显个体差异。 该结果在采用不同网络架构,不同训练集和距离测量的情况下都成立。团队分析认为,这种差异的程度与 “用不同输入训练神经网络” 所产生的差异相当。 如上图所示,研究团队通过计算对应 RDM 之间的所有成对距离,比较 all-CNN-C 在所有网络实例和层、上的表示几何。 再通过 MDS 将 a 中的数据点(每个点对应一个层和实例)投影到二维。各个网络实例的层通过灰色线连接。虽然早期的代表性几何图形高度相似,但随着网络深度的增加,个体差异逐渐显现。 在证明了深度神经网络存在的显著个体差异之后,团队继续探索了这些差异存在的解释。 随后,研究者再通过在训练和测试阶段使用 Bernoulli dropout 方法调查了网络正则化(network regularization)对结果能造成的影响,但发现正则化虽然能在一定程度上提升 “采用不同起始随机种子的网络之表征” 的一致性,但并不能修正这些网络间的个体差异。 最后,通过分析网络的训练轨迹与个体差异出现的过程并将这一过程可视化,团队在论文中表示,神经网络的性能与表征一致性间存在强负相关性,即网络间的个体差异会在训练过程中被加剧。 总而言之,这项研究主要调查了多个神经网络在最少的实验干预条件下是否存在个体差异,即在训练开始前为网络设置不同权重的随机种子,但保持其他条件一致,并以此拓展了此前与 “神经网络间相关性” 有关的研究。 除了这篇 这篇 研究以外,“深度学习三巨头” 之一、著名 AI 学者 Hinton 也有过与之相关的研究,论文名为《Similarity of Neural Network Representations Revisited》,文章探讨了测量深度神经网络表示相似性的问题,感兴趣的读者可以一并进行阅读。 Refrence: [1] [2]
突触传递机制研究新进展 摘要:最近的几年里,科研人员一直致力于突触传递机制的研究,他们对有关的各种生物现象中寻找突触传递在其中的机制。本文将从对突出传递机制的新进展做一个小小的综述。 关键词:突触可塑性;视网膜;调控机制;tau蛋白;伏隔核谷氨酸能;可卡因;大鼠VTA区DA神经元;脑胶质瘤致癫病;长时程增强(LTP);膜片钳;GluR2 缺失的AMPARs 视网膜突触可塑性调控机制研究进展#突触可塑性的变化影响着中枢神经系统的发育,损伤和修复等多种功能。研究发现,在视网膜发育、损伤修复过程中可出现突触可塑性改变,而自发性眼波、光线刺激、视觉经验、神经营养因子和胶质细胞等因素均参与了视网膜突触可塑性的调节。突触连接的改变是经验依赖性脑神经回路重排的基础,突触可塑性的变化影响着神经系统的发育,神经的损伤和修复等多种脑功能,目前突触可塑性的调节机制还未完全阐明。近30 多年来,对于视觉系统发育和可塑性的研究取得了很大的发展,尤其是对于视神经突触水平的变化有了较清晰的认识,但还有很多问题尚待深入研究:各种神经生长因子参与视觉发育可塑性的确切机制;在基因水平上还需进一步通过对多种相关基因的反应时程和强度进行分析, 研究其对视网膜突触可塑性的影响;视网膜突触可塑性中胶质细胞增殖、分裂、分泌生物活性物质等功能的调控。随着脑科学、发育生物学及神经生物学等边缘学科的迅猛发展,相信不远的将来,人类一定会在该领域取得突破性进展,并给治疗相关视网膜疾病及视网膜损伤后的修复治疗研究提供新思路和理论依据。兴奋性突触传递对tau蛋白表达和省略响及其在阿尔茨海默病发病中的作用兴奋性突触传递是神经元最基本的功能,NMDA受体(N-Methyl-D-aspartate receptor, NMDAR)是神经系统中最主要的兴奋性离子型受体之一,其在学习记忆,突触可塑性,神经发育等方面具有重要作用,但NMDA受体过度激活导致谷氨酸聚集于突触间隙所诱导的神经毒性作用也是许多神经退行性疾病的共同发病机制。阿尔茨海默病(Alzheimer’s disease, AD)是成人痴呆症最主要的病因,其中tau蛋白过度磷酸化和聚集是AD脑内的主要病理特征之一。兴奋性突触传递与tau病变之间的联系目前少见报道。本研究探讨了谷氨酸能兴奋性突触传递增强对tau蛋白表达和磷酸化的影响及其在AD样神经退行性变中的作用。本文第一部分探讨了短时间突触传递增强对tau蛋白磷酸化的影响和内在机制。成人脑内约有一半的谷氨酸能神经元是谷氨酸-锌能神经元,即突触兴奋时锌离子与谷氨酸一起释放至突触间隙。本研究阐明了谷氨酸-锌能神经元兴奋时突触释放的锌离子通过抑制蛋白磷酸酯酶2A (Proteinphosphatase2A, PP2A)的活性导致tau蛋白过度磷酸化。 慢性吗啡处理对伏隔核谷氨酸能突触传递的影响药物成瘾和自然的奖赏效应(食物、性等)共享同样的神经基础——中脑边缘多巴胺系统,该系统主要涉及杏仁核、弓状核、蓝斑、中脑导水管周围灰质、腹侧被盖区(ventraltegmental area, VTA)、伏隔核(nucleus accumbens,NAc)等脑区,其外延包括额叶皮层、海马等与情绪、学习和记忆密切相关的结构。目前的观点认为奖赏性刺激是通过对脑内奖赏系统发挥作用,最终引起NAc区多巴胺(dopamine,DA)释放量增多,从而产生奖赏效应。NAc在成瘾中起着至关重要的作用。NAc中神经元因在吗啡成瘾及戒断的过程中产生适应性变化而备受关注。前额叶皮质(prelimbicprefrontal cortex,PFC)的功能之一是对有利刺激的重要性进行评估,并抑制在当前环境中不适当的行为,该脑区在成瘾药物的精神依赖中发挥着对觅药动机进行评估和抑制的重要作用。Mark EJackson等研究发现,利用接近生理条件下的刺激频率来刺激PFC后抑制了NAc中多巴胺的释放,提示了前额叶中存在着对NAc中的多巴胺的释放的抑制性调节 单次可卡因注射对大鼠VTA区DA神经元兴奋性突触传递和内在兴奋性的影响中脑皮质边缘多巴胺系统(mesocorticolimbicdopamine system)与奖赏和药物成瘾有十分密切的关系。该系统包括腹侧被盖区(ventraltegmental area, VTA)多巴胺能神经元的两条主要投射通路:一条由腹侧被盖区投射到伏隔核(nucleusaccumbens, NAc)和纹状体,称为中脑边缘多巴胺系统(mesolimbicdopamine system);另外一条由腹侧被盖区投射到前额叶皮质(prefrontal cortex),称为中脑皮质多巴胺系统(mesocortical dopamine system)。这两条通路合称为中脑皮质边缘多巴胺系统。药物成瘾的解剖基础是奖赏系统,中脑边缘多巴胺系统是其关键,中脑腹侧被盖区(VTA)及其投射区伏隔核(NAc)是主要的神经基础,多巴胺(DA)是非常重要的神经递质。除了参与天然和成瘾性药物的奖赏刺激,当今更多的研究发现中脑边缘多巴胺系统还与成瘾的渴求和复发有关。在VTA区域微量注射吗啡、可卡因等都能诱导产生条件性位置偏爱(CPP)。VTA区注射吗啡还可点燃海洛因、可卡因等的自给药行为。 LTP 的分子机制研究进展LTP机制的研究热点由单一兴奋性递质机制过渡到兴奋性递质与抑制性递质联160 合机制。目前,已证明突触可塑性的改变与多种疾病相关,如阿尔茨海默病、癫痫、慢性痛、药物成瘾性和精神分裂症等。常用在体LTP技术和膜片钳脑片LTP技术两种检测方法。在体海马LTP的优势在于能较真实地反映生理状态下神经突触活动的情况,在整体条件下观察神经突触活动的变化,利于从宏观角度研究和探讨相关机理。其进展体现在:CaM-CaMKII,Ca2+作为胞浆第二信使,与钙调蛋白(Calmodulin, CaM)结合形成Ca2+-CaM复合物,进一步激活CaMKⅡ。CaMKⅡ被认为是一个分子开关,在静息状态时,自身抑制区封闭催化部位而处于非活化状态。但当神经元受刺激时,Ca2+-CaM复合物与CaMKⅡ的自身抑制区结合,改变此酶的构象,从而具有活性。MEK-ERK,细胞外信号调节激酶(extracellularsignal-regulated kinase,ERK)是丝裂原活化蛋白激酶(micogen activated procein kinases,MAPKs)家族中的重要成员,和细胞的生长、发育、分化有关。最近研究表明,ERK通过影响相关核转录因子在LTP和学习记忆过程发挥着调节作用。PKA-CREB,长时记忆(Long term memory,LTM)需要新蛋白质的合成,PKA-CREB信号通路被认为在新蛋白质的合成过程中起重要作用。PKA的激活可以引发CREB的转录,并促使ERK向细胞核发生移位,表达参与到晚期LTP(Late-LTP, L-LTP)和LTM的发生机制。BDNF(脑源性神经营养因子),FanM等发现,BDNF与蛋白激酶Mδ(PKMδ)相关,两者相互影响。在蛋白质合成及强直性刺激的参与下,BDNF能够在一定程度上提高PKMδ的水平,从而影响 L-LTP的维持过程。但是在抑制神经元及突触活性后,BDNF则对PKMδ的稳态水平没有影响。PKMδ对BDNF介导的L-LTP是必不可少的。TrkB作为BDNF的受体,需要通过新蛋白质的合成被激活,从而参与到L-LTP的表达过程中。Munc13Munc13系列蛋白是一种基因调控蛋白,在突触囊泡胞吐和神经递质释放中发挥重要作用,对于目前Munc13与LTP相关性的研究成为热点。 脑胶质瘤致癫病的化学突触机制研究进展脑胶质瘤致病是由于胶质瘤对瘤周组织产生的一系列影响所引起的。然而这其中的病理生理学机制还有待于进步研究和探讨,主要涉及继发于胶质瘤后的结构学、生物化学及组织病理学方面的改变。而胶质瘤致病在临床治疗过程中属于难治型癫病,主要是由于抗癫病药物对胶质瘤致病的病理生理过程干预较少甚至是不干预,因此,揭示胶质瘤致病的病理生理过程可能为临床上肿瘤致桶的药物干预和治疗提供分子靶点和治疗依据。 GluR2 缺失的AMPARs在突触可塑性机制中的研究进展与活性依赖的突触的AMPARs 数目改变不同,活性依赖的AMPARs 亚基的修饰引起Ca2+信号转导的改变,通道传导和动力学的改变,使突触产生了不仅量而且是质的改变。这些重要的问题仍然需要进一步研究,如为何抑制性中间神经元和元棘突神经元中AMPARs 的GluR2 亚基低表达;GluR2亚基在活性依赖的细胞特异的改变的是什么机制;除了受体受到调节运输外,另→个重要的未解决的问题是AMPARs 介导的Ca2+内流有什么特殊功能,有力的证据的表明Ca2+内流可以激发LTP ,然而关于Ca竹在突触后的靶向目标却很少了解。因此关于GluR2 缺失的AMPARs 与突触可塑性的相关特异机制仍有待进一步研究。 [参考文献][1] Wahlin KJ, Moreira EF, Huang H, et al. Molecular dynamicsof photoreceptor synapse formation in thedeveloping chick retina. J CompNeurol[J]. 2008, 506(5): 822-837[2] Justin Elstrott, Anastasia Anishchenko, selectivity in the retina is establishedindependentofvisual experience and early cholinergic retinal waves. Neuron[J]. 2008,58(4): 499-506[3] 罗佳,王慧,黄菊芳,陈旦;《视网膜突触可塑性调控机制研究进展#》;Q422[4] Bliss TV, Lomo T. Long-lasting potentiation of synaptictransmission in the dentate area of the anaesthetized rabbit followingstimulation of the perforant path. J Physiol[J]. 1973,232;331-356 [5] Whitlock JR, HeynenAJ, Shuler MG, Bear MF. Learning induces long-term potentiation in thehippocampus. Science[J]. 2006,313:1093-1097.[6]魏显招,王雪琪,《GluR2 缺失的AMPARs 在突触可塑性机制中的研究进展》,DOI: 10. 3724/SP. J. 1008. 2009. 00437
21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦
168 浏览 5 回答
238 浏览 4 回答
144 浏览 3 回答
161 浏览 3 回答
324 浏览 2 回答
148 浏览 3 回答
179 浏览 4 回答
296 浏览 2 回答
237 浏览 5 回答
197 浏览 5 回答
294 浏览 5 回答
126 浏览 3 回答
206 浏览 6 回答
216 浏览 2 回答
175 浏览 2 回答