当前我国对生态文明建设重视程度空前,党的十九大将“增强绿水青山就是金山银山的意识”写入党章,将“美丽”作为社会主义强国目标的重要内容,水环境治理是其中最为核心的内容之一。城市污水处理厂作为治污基础设施之一,是治水工作的关键环节,其处理规模、处理水平等直接影响治水成效。本文通过分析我国已建的上海白龙港、广州新华、宝鸡市高新区、通辽市污水处理厂,太湖地区、三峡库区污水处理厂的运行情况,发现其运行普遍存在运行负荷率较低、进水水质水量波动较大、出水水质难稳定达标等问题,通过深度剖析原因,科学地提出了针对性的解决对策,以期为我国城市污水处理厂的稳定运行提供参考,为水环境综合治理做出贡献为全面贯彻《水污染防治计划》,全国各城市先后开展黑臭水体整治工作。城市污水处理厂在保障水环境安全方面发挥着重要作用,建设污水处理厂是解决城市水污染的重要手段。“十三五”全国城镇污水处理及再生利用设施建设规划中提出,到2020年底,要实现城镇污水处理设施全覆盖,城市污水处理率达到95%,县城不低于85%。“九五”期间,我国重点流域水污染防治规划开始实施,城镇污水处理设施的建设和运行开始成为各地落实水污染物减排责任目标的主要途径。在中央财政资金和相关政策的大力支持下,经过“十一五”、“十二五”的发展,我国污水处理厂建设取得了跨越式的进展,城镇污水处理厂的数量和规模迅速提升,城市污水处理能力不断提高。统计资料显示,至2016年末,城市污水处理率达到,其中污水集中处理率。截至2010年,全国共有城镇污水处理厂2496座,较2006年相比提高了140%。到2016年末,城镇污水处理厂数量达到3552座,与2010年相比增加了29%。但是,污水处理率与处理能力的持续提高与水环境污染依然矛盾突出。环保部公布的《2016中国环境状况公报》显示,全国地表水1940个监测断面中,仍有32%为IV类及以下水体。截止2017年底,住房与城市建设部和环保部认定的全国城市黑臭水体数量有2100个。与此同时,污水处理厂排放标准不断提高,2015年发布的《水污染防治行动计划》明确提出,现有城镇污水处理设施,要因地制宜进行改造,2020年底前达到相应排放标准或再生利用要求;敏感区域(重点湖泊、重点水库、近岸海域汇水区域)城镇污水处理设施应于2017年底前全面达到一级A排放标准,建成区水体水质达不到地表水Ⅳ类标准的城市,新建城镇污水处理设施要执行一级A排放标准;到2030年,力争全国水环境质量总体改善,水生态系统功能初步恢复。由于我国城镇污水普遍存在着水质水量变化幅度大、碳氮比偏低、无机悬浮固体含量高、冬季水温低、工业有毒有害污染物冲击等突出问题,明显影响污水处理设施的正常运行,出水难以稳定达标。即使在达标排放的情况下,符合一级A/B标准的水质仍接近V类水(表1),是水环境的重要污染源。表1我国城镇污水处理厂排放标准主要污染物指标对比 单位:mg/L一些城郊结合部因居民乱扔、乱排生活污水,对水环境也带来严重危害。为此,本文作者深入分析了我国南北方具有代表性的污水厂存在的问题及原因,并提出解决对策,以期为我国城市污水处理厂的稳定运行提供参考,为水环境综合治理做出贡献。1存在问题及原因分析运行负荷率普遍较低,部分超负荷运行根据住房与城市建设部2012年发布的《城镇污水处理厂运行、维护及安全技术规程》(CJJ60-2011),城镇污水处理厂年处理水量应达到计划指标的95%以上。我国大部分地区的污水处理厂运行负荷率偏低,难以达到住房与城市建设部的要求。辽宁省污水处理厂月均负荷在80%以上的仅占污水厂总数32%。通辽经济技术开发区污水处理厂现状水量未达到设计值,近一半处理设施闲置。广西城镇污水处理厂2010年负荷率达到60%以上的污水厂占总量的65%。三峡库区2014年176座污水处理厂的平均运行负荷仅为。全国已建污水处理厂平均运行负荷率仅有65%~70%,远低于德国2008年污水处理厂平均运行负荷率95%。而一些城市由于经济发展迅速,人口数量增长过快,污水处理厂已超负荷运行,处理压力大。污水厂处理设施负荷率低的主要原因是厂网建设不配套,污水管网覆盖率和收集率偏低。污水处理厂只有和排污管网配合使用,才能发挥治污作用。由于污水厂建设相对简单、集中、建设周期短,管网建设相对复杂、牵涉面广、建设周期长,我国城市管理者普遍重建厂、轻管网、轻管理。数据显示,截至2016年全国共有城镇污水处理厂3552座,与2010年相比增加了29%,排水管道长度仅增加了17%。配套管网与污水处理厂建设不同步,导致一些污水处理厂建成后面临无污水可处理的尴尬境地。有些城市先期只建设了污水干管,由于资金不到位支管网建设推进缓慢。部分城市新建的管网存在诸多问题无法与已有干管接驳,如设计标高与已有干管不一致,已有干管积水堵塞等。导致建成管网没有“织网成片”,污水收集率偏低。另一原因是污水厂设计规模与实际情况不符。由于部分城市对污水处理厂建设前期工作重视不够,对污水来源和收集缺少详细的规划和充分的论证,管网、泵站等辅助设施建设相对滞后,设计规模往往基于理论设计计算。在经济相对落后的地区,人均实际用水量和污染物排放量相对偏低,导致设计规模偏大,实际污水量不足。而在一些发展较快的城市,随着经济的快速发展和居民生活水平的不断提高,污水产生量不断增加。污水厂设计规模滞后于人口经济增长速度,污水厂处理能力不足,出现超负荷运行现象。进水水质水量波动较大,与设计值不符污水厂原水水质和水量是影响污水处理工艺运行稳定性的重要因素。我国城市污水厂进水水质水量波动较大,部分污水厂进水负荷波动幅度可达到-47%~4%。上海白龙港污水厂进水BOD5日平均浓度波动范围为14~382mg/L,CODCr波动范围为96~824mg/L。昆明市合流制排水区域污水处理厂进水受雨季影响,悬浮物波动大。除了水质波动,一些污水厂进水水质有机物浓度与设计值有差异,严重影响了污水处理效果。宝鸡高新区污水处理厂实际进水水质除NH3-N和TN外,其他各指标均高于设计值。宝鸡十里铺污水处理厂进水TP高于设计值外,其它各指标均低于设计值。分析原因,主要是排水管网雨污分流不彻底、管网漏损、沿河截污冲击污水处理系统。我国老城市的排水体制一般为雨污合流制,后来部分城市改为截流式合流制。合流制排水体制下,污水处理厂进水水质受多种因素影响。雨季时排水管网同时收集了生活污水和大量的雨水,引起污水厂水量的波动。其中初期雨水污染物浓度高、污染严重,部分污染物指标高于旱季污水浓度,造成水质的波动。在我国,由于管网维护的不及时,老旧管网渗漏严重,地下水、河水及雨水的混入也直接影响了进入污水处理厂的水量、水质。在一些南方地区,由于前端管网建设不完善,污水厂旱季水量偏小,需要抽取河道水;但在雨季,雨污合流管网的水量又远超过污水厂的处理规模,造成了旱雨季水质波动较大。沿河截污系统对污水处理系统的冲击,是造成水质水量波动的又一原因。作为合流制改造过程中的过渡产物,沿河截污系统在一些南方城市较为常见。该系统可极大程度地改善河流长期以来的黑臭状况,但也存在一些问题。系统雨季收集的合流水含有大量雨水,导致污水厂旱、雨季污水处理量逐年加大,污水处理厂雨季负荷普遍偏大。而截污箱涵系统大部分尚未配备相应的末端处理设施,携带大量污染物的初小雨直接进入污水厂,造成水质波动,处理效果难以保障。另外,我国处于经济快速发展阶段,区域经济差异明显。经济相对发达、人口密集地区的城市不断扩容,但实际扩容速度与规划往往不一致,致使污水增长量与污水厂设计规模不一致。当污水量超过设计规模时,污水处理厂处于“吃不饱”状态,当设计规模超过实际处理需求时,又造成“大马拉小车”现象。西北地区的污水处理设施则由于服务数量不足、管网配套差等问题处于“吃不饱”状态,这些都影响着污水处理厂的进水水质水量。出水水质难以稳定达标,NH3-N、TN超标我国现有污水处理厂大部分执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准,其中执行一级A标准的占总数量的,执行一级B标准的接近60%。截至2016年底,我国仅有30%的污水厂尾水达到一级A标准,高达70%的污水处理厂排放标准达到或低于一级B排放标准。大部分污水厂主要超标污染物为NH3-N、TN,上海市白龙港污水处理厂采用A2/O工艺,出水NH3-N一级B达标率仅有46%,TN一级B达标率68%。三峡库区176座污水厂一级B达标率,通辽污水厂一级A达标保障率低于50%,宝鸡十里铺污水厂NH3-N、TN一级A达标保障率分别为、。广州新华污水处理厂出水TN和NH3-N在1-3月份偶尔超标,不能稳定达到一级A标准。污水处理厂出水水质不达标,无法充分发挥效能,不仅降低了污水厂投资效益,也给污水厂运行管理带来困难,应充分引起运行管理者的重视。工艺是污水厂处理效果的关键保障因素,我国城镇污水厂使用的工艺主要为普通活性污泥工艺、氧化沟及其改良工艺、A2/O及其改良工艺、SBR及其改良工艺、A/O及其改良工艺和曝气生物滤池(BAF)工艺,这六类工艺覆盖了全国90%以上城镇污水处理厂的主体工艺类型。上述工艺具备脱氮功能,而实际运行中由于进水水质水量波动或与设计值不符、生物处理设施超负荷运行、碳源不足、碳氮比不足等原因,出水难以达到排放标准。当污水处理厂进水BOD5、TN、TP浓度低于设计进水浓度时,从多方面严重影响污水处理效果。一方面,污水中BOD5浓度过低导致生物处理单元中的微生物所需有机物不足,影响反硝化阶段脱氮效果。另一方面,进水污染物浓度偏低时生物反应池中曝气量高于微生物需求量。如不能及时调整曝气池曝气量,容易出现曝气过量,导致活性污泥沉淀分离效果较差。除此之外,南方地区冬季缺少保暖措施,致使进水水温较低,不利于硝化反硝化细菌的生长,出水NH3-N、TN浓度无法保障。除了工艺方面的原因,污水厂的运行管理水平也对出水水质有重要影响。污水厂的运行是一个复杂的过程,操作人员应在水质、环境条件发生变化的条件下,充分利用各种工艺的弹性进行适当调整,及时发现并解决问题。操作人员除了要具备一定的物理、化学及微生物学方面的知识,还需了解污水处理基本知识、厂内构筑物的作用以及化验指标的含义及其应用等。在国外,污水处理厂的运行通常由博士来实施。在国内,由于薪资水平等原因的限制,大部分污水厂的员工学历层次普遍偏低、技术素养不足,往往凭经验操作污水厂各工艺设施,严重制约和影响污水处理厂整体运行水平。其他问题随着工业化、城市化进程的推进,城郊结合部生态环境问题日益凸显。这种“结合”是城市与乡村、农业与工业、农民与市民的结合,充满着一种不确定的、动态的过渡和转型。城郊结合部的城中村建筑废弃物、生活垃圾四处堆积,居民乱排生活污水,流经的小河流颜色发黑,垃圾漂浮,污染严重。如果不能得到有效控制,时时威胁着当地居民的健康。由于制度措施的不完善、管理不到位,使得城郊结合部出现这样的难题。工业园区的发展对经济发展的促进作用日益显著,但随之而来的环境污染也在加剧。大型集中的工业园区一般都有污水处理厂,对大量的、中小型工业企业的废水,采用经预处理后与园区生活污水合并处理的方式,实际运营过程中也有不少问题出现。一是实际水量与设计不符。在园区污水处理厂设计阶段,由于对发展规模预估不足,实际污水量超出污水处理厂处理能力。部分企业由于生产状况不稳定,使污水处理厂处理量不足。二是实际进水水质与设计不符。实际入园企业的类型与规划不符,导致污水特征发生较大变化,使污水厂难以达标排放。2对策与建议政府统筹规划,污水处理厂、管网建设同步推进政府各部门应结合各自职能,协调一致,科学组织,实现污水处理厂的长效管理[11]。住建部门会同环保、发改委等部门,紧跟城市发展脚步,牵头编制污水处理厂、污水管网的统筹规划,以前瞻性思维规划和设计污水处理厂。地方政府要制定政策推进污水处理厂的运营规范化,与物价、住建、财政等部门联合,因地制宜地研究制定与当地经济社会发展水平相适应的污水处理收费制度。财政部门应增加对污水处理厂的资金投入,创新投资建设运营模式,提高污水厂运行人员的工资水平,从而吸引高水平、高素质的人才进行运行管理。环保部门要加强对污水处理厂出水水质的检查监督,对整治不力的要严肃查办。完善污水收集系统,实现水量浓度“双提升”为充分发挥污水厂效能,要坚持厂网并举,将排水管网和污水厂作为一个整体建设。首先要加快新增污水管网建设,建成从“用户—支管—干管—污水处理厂”路径完整、接驳顺畅、运转高效的污水收集系统,提高已建污水厂运行负荷。其次是要强化老旧管网改造,对漏损严重的管网、排水口、检查井进行维修,减少管道淤积,确保收集的污水水质、水量稳定。再者是要彻底进行合流制管网改造,难以改造的地区加快建设截流、调蓄等设施,减少雨季雨水对污水厂水量水质的冲击。源头分散处置初期雨水,减轻进厂污水量变化幅度针对初期雨水影响进水水质水量问题,宜源头分散处置。从初期雨水的特点和国内外初期雨水处置经验来看,初期雨水应采用源头分散收集、分散处置等方式;初期雨水集中收集非常困难,主要原因在于若设置集中收集系统,上游初期雨水到达时,下游早已是干净的雨水,很难保证能够收集到20~30分钟前的初期雨水。已建设初小雨收集系统的城市,应增设相应末端处理设施,减轻初小雨对污水处理厂的水质影响。有条件接入污水处理厂处理的,应论证污水处理厂具备接收条件后再接入。加强管网精细化管理,防患于未然重视建成污水管网的日常管理与维护工作,加强管网的精细化管理[12]。首先是要加强日常巡查,对存量管网“修补测”、“定期体检”并加以修缮。采用CCTV和QV手段对管道内部进行检测,掌握其病害的分布状况和程度,为管道修复提供基础。其次要实行定期清淤制度,保证污水管道正常通水。目前大部分城市管道仍采用人工清淤,不仅工作环境恶劣,且效率低下,无法满足需求。可引进高科技清淤手段,如清淤机器人等,实现自动高效清淤。再者,对排水管网数据进行信息化处理,建立污水管网水质在线监测系统等,实时掌握水质情况。当水质出现异常时可及时查出管段存在问题,并提醒污水处理厂采取有效应对措施[34]。优化污水处理厂服务范围,提标扩容污水处理厂一般位于城市建设区,随着城市建设和城市更新的开展,城市污水量增长较快而污水处理厂或污水系统扩容困难的矛盾日益突出。对污水厂超负荷运行的地区,通过服务范围的调整解决污水处理厂污水增量问题有着重要的意义。同时考虑提升污水处理厂处理能力,进行污水厂扩建。按照GB18918-2015《城镇污水处理厂污染物排放标准(征求意见稿)》的要求,自2016年7月1日起新建污水处理厂和自2018年起敏感区现有城镇污水处理厂均执行一级A标准。对排放标准较低污水处理厂改造,因地制宜合理选择改造措施,提高出水水质。提标改造路径一般包括水力改造、设备改造和工艺升级改造等,其中污水处理工艺改造是提高出水水质的关键。TN和NH3-N主要通过生化系统处理去除,这两个指标是生化系统改造的主要目标污染物。TN的去除效果受制于进水碳氮比,由于我国大部分污水处理厂进水碳氮比偏低,可通过改进运行方式,合理利用内部碳源,或投加碳源的方式,提高反硝化能力。当NH3-N不达标时,可在二级生物处理后增加曝气生物滤池。涉及具体项目时,按照“一厂一策、分门别类”的原则制定适宜的工艺方案。集散结合,统筹治水城市主城区的生活污水应集中处理,通过建设完善污水管网将污水收集到污水处理厂集中处理。而在城郊结合部,有条件建设管网的城市应逐步完善管网系统,对污水进行集中处理。短期内无法建设管网系统的,应采取分散处理的措施。分散式一体化污水处理装置,具有移动灵活、自动化控制程度高、处理效果好的特点,在城中村等分散式污水处理中已有大量应用,是解决城郊结合部水污染的有效措施。工业园区污水厂存在的问题并不是一个企业的问题,需要改革和发展来解决,加大对污染源排放的控制力度,工业企业要严格执行相关法规,确保废水达标排放。3结语城镇污水处理及再生利用设施是城镇发展不可或缺的基础设施,是减少水体外源污染的重要手段,保障其安全、稳定、高效地运行,对于水环境治理具有十分重要的意义。目前我国污水处理厂运行中仍存在一些问题,有的放矢地总结存在问题,可为今后污水厂科学化管理奠定基础。只有政府部门统筹规划,加强顶层设计,不断完善污水收集系统,加强管网精细化管理,进行提标扩容建设,才能充分发挥污水处理厂的环境效益,改善城市水环境质量,促进水环境治理成效的长久保持。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
丹麦大型城市污水处理厂运行、维护和管理崔成武1,* Gert Petersen1,2(1. 丹麦技术大学环境与资源学院,Lyngby,丹麦,2800; 2. EnviDan,Kastrup,丹麦,2770) 摘要:本文简要介绍了丹麦城市污水处理的现状,包括城市污水处理厂数量、类型、处理负荷以及欧盟和丹麦环保部门的相关要求等。另外,针对大型城市污水处理厂,本文以Lynetten、Damhusen、Lundtofte 和Avedre 四大城市污水处理厂为例,介绍其运行维护和管理方面的经验。最后,本文还介绍了丹麦以及上述四大城市污水厂的污水和污泥处理费用。 关键词:丹麦,污水处理,污泥处理,气体处理,城市污水处理厂,运行管理,运行费用 中图分类号: 文献标识码:AThe operation, maintenance and management of big domestic wastewater treatment plants in DenmarkCui Chengwu1,* Gert Petersen1,2(1. Institute of Environment & Resources, Technical University of Denmark, Lyngby, Denmark, 2800 2. EnviDan, Kastrup, Denmark, 2770)Abstract: This paper briefly introduces the situation of domestic wastewater treatment in Denmark, which includes the numbers, types, capacities of domestic wastewater treatment plants and the effluent requirements from both EU and Danish EPA. The operational experiences and management of the big domestic wastewater treatment plants are explained mainly based on the data from Lynetten, Damhus?en, Lundtofte and Aved?re WWTP in Denmark. At last, this paper also introduces the average wastewater treatment fee in Denmark and the operational cost of both wastewater treatment and sludge treatment in those 4 words: Denmark, wastewater treatment, sludge treatment, gas treatment, domestic wastewater treatment plant, operation and management, operation fee1.简介 丹麦位于欧洲北部,经济发达,人均国民生产总值居于世界前列。同时,丹麦政府对环保建设非常重视,尤其是城市污水处理问题。在欧盟委员会关于91/271/EEC 法案(城市污水处理法案)执行情况的第三次和第四次总结报告中[1,2],丹麦与德国、奥地利等国共同被归属于欧盟城市污水处理较好的国家之列。自执行欧盟91/271/EEC 法案后,丹麦城市污水处理厂和工业废水处理厂出水质量均得到明显改善。自1989 年到2004 年,丹麦城市污水处理的发展可分为两个阶段,分别是1989~1996 年的快速成效阶段和1996~2004 年的平稳下降阶段。例如:在1989 年,丹麦城市污水处理厂出水中BOD5 总量为35000 吨,到1996 年,这一数据快速下降到5000 吨,而到2004 年,则平稳下降到2500 吨。 丹麦政府规定,当人口当量大于30PE1 时需建设相应的污水处理设备。根据2004 年统计结果[3],丹麦全国共有1193 个城市污水厂,其中237 个为私营污水厂。自1993 年到2004年的12 年间,丹麦城市污水处理厂的类型发生了巨大的变化。具有脱氮功能的生物污水处理厂的比例从1993 年的54%提高到2004 年。与此变化相符合的是城市污水厂出水氮磷含量明显降低。2004 年,城市污水处理厂TN 平均去除率为80%,TP 平均去除率高达96%。 在丹麦,尽管城市污水处理厂的数量较多,但规模普遍较小。在1193 个城市污水处理厂中,处理规模小于1000 m3/天的污水厂占到了,但却只处理全国6%的城市污水。绝大多数的城市污水是由大规模集中式城市污水处理厂处理的。如:处理规模大于10000 m3/ 天的污水厂只有62 个,但却处理了全丹麦70%的城市污水。 丹麦城市污水处理厂出水标准遵照欧盟91/271/EEC 法案以及丹麦环保部门和地方行政 区所制定的出水标准来执行。具体出水标准见表 1。2.丹麦大型城市污水厂的运行和维护 丹麦大型城市污水处理厂(人口当量大于100000 PE,即进水量大于20000 吨/天的城市污水厂)所具有的共同特点之一就是污水和污泥处理的工艺非常接近。就下文重点讨论的Lynetten、Damhus?en、Lundtofte 和Aved?re 污水厂来说,其污水处理的核心技术均采用基于氧化沟工艺的Biodenitro 或Biodenipho 技术。而对于污泥处理,一般都需要经过厌氧硝化、离心脱水和焚烧处理后,外排到垃圾填埋场。 另外一个共同的特点就是污水厂的管理方式非常类似。一般来说,丹麦大型城市污水处理厂有两个具有不同功能的管理机构,分别称为董事会和市政业务委员会。董事会成员由污水厂管辖范围内的几个行政区的工作人员组成。董事会成员代表其所在行政区,主要工作是协调行政区与污水厂之间的关系以及监督污水厂的日常运行情况。同时,还需对该行政区污水处理进行详细的规划和总结。而市政业务委员会则主要负责污水厂的日常运行维护和管理工作。同时,在市政业务委员会中也会有各个行政区的负责人员,其主要负责与董事会成员进行对接,确保行政区与污水处理厂之间关系的通畅。以Aved?re 污水厂机构为例,该污水厂的污水来源于10 个行政区。该污水厂管理结构见图 1。 基本情况简介 Lynetten、Damhus?en、Lundtofte 和Aved?re 污水厂均位于丹麦西兰岛上,负责周边行政区的城市污水和工业废水处理[4,5]。2004 年,污水厂处理负荷和进水负荷情况见表 2。Lynetten 是丹麦最大的城市污水处理厂,设计处理能力为15 万吨/天,2004 年实际进水负荷近20 万吨/天。Damhus?en 为丹麦第三大城市污水处理厂,设计处理能力为7 万吨/天。Damhus?en 与Lynetten 共属Lynettenf?llesskabet 公司(Lynetten 联合公司)经营管理。Aved?re 为丹麦第五大污水处理厂,设计处理能力 万吨/天,归属丹麦Spildevandscenter Aved?re (Aved?re 污水中心)经营管理。Lundtofte 相对较小,设计处理量为 万吨/天。 上述四个污水厂进水水质特性和出水情况见表 3 和表 4。对进水水质分析后发现:4 个污水厂进水水质的COD/BOD5 值属文献中[6]的中低值域范围,这可能与工业废水汇入有关。经过总结后发现:丹麦城市污水的COD/TN 和 COD/TP 均处于文献中[6]规定的中高值域范围内。从中发现,四个城市污水厂的重点污染物出水指标均低于欧盟91/271/EEC 法案以及丹麦环保部门的相关要求。 工艺流程 丹麦城市污水处理厂工艺一般可分为三部分:污水处理单元、污泥和废物处理单元以及废气处理单元。Lundtofte 污水厂是丹麦非常典型的城市污水厂,下面基于Lundtofte 污水厂的工艺流程对各部分进行讨论。Lundtofte 污水处理厂的具体工艺流程见图 2 所示。 污水处理单元 机械处理 对于城市污水厂来说,污水机械处理通常包括粗格栅、曝气沉砂池、细格栅、初沉池以及二沉池等工序。由于各种机械处理工艺的设计已经非常成熟,因此无需再进行详细讨论。但是,针对机械处理过程所产生的废物和废气处理问题是值得学习和借鉴的。 在进入曝气池前,一系列的机械处理过程会产生大量的废物。丹麦大型城市污水厂的做法是:固体废弃物并没有与剩余污泥混合进入厌氧消化池,而是经过脱水后直接进入污泥焚烧炉进行焚烧处理。这是因为此类固体中无机物含量相对较高,直接进入消化池会影响厌氧消化效果。另外,这类废物也没有应用于建筑方面的回用,主要原因是此类沙子中含有重金属以及持久性有机物,对人体健康具有潜在危害。 丹麦大型城市污水处理厂十分重视机械处理过程中由于曝气或搅动所产生废气的收集和处理问题。一般来说,曝气沉砂池全部采用铝质材料封顶。部分污水厂的初沉池上面也会封顶。处理过程中所产生的气体,如H2S 也会随特定的气体管路进入焚烧炉处理。 生物处理 如前所述,丹麦大型城市污水厂污水生物处理工艺非常接近。上述四个污水厂均采用Biodenitro 或是Biodenipho 工艺。下面针对这两种工艺进行简单介绍。 工艺简介 Biodenitro 和Biodenipho 工艺为丹麦Krüger 公司的专利技术。该种技术的特点是自动化控制程度高、占地面积小、有机物和氮磷的去除效果良好。与Biodenitro 工艺不同的是,Biodenipho 在前面添加了一个厌氧池(Bio-P tank),因此具有生物除磷功能。而Biodenitro 无法进行生物除磷,只能借助于化学除磷。 下面以Biodenitro 工艺为例,重点介绍该工艺的运行和控制。 Biodenitro 工艺的运行是基于氧化沟技术(丹麦城市污水厂多采用基于表曝的氧化沟技术)。通常是将两个氧化沟划分为一组,采用交替曝气的方式运行以达到硝化反硝化的目的。Biodenitro 工艺分为四个阶段,见图 3 所示。其中,值得注意的是设置b 阶段和d 阶段的主要目的有两个:一是去除第一阶段在缺氧池中残留的氨氮;二是由于硝化耗时相对较长,为了能够达到更好的出水标准。一般来说,尽管Biodenipho 工艺具有较强的生物除磷功能,但污水厂依然会辅助使用化学除磷的方法已达到更佳的出水TP 浓度。而采用Biodenitro 工艺的污水厂更是如此。投放的物质一般为FeCl3 或AlCl3,投放地点设置在曝气池前。在曝气池后安装了磷在线监控装置,当发现TP 浓度超标时会自动投加除磷。 控制系统 上述4个大型城市污水处理厂均采用SCADA和STAR系统来控制污水厂的正常运行。SCADA 技术建立在3C+S (Computer、Communication、Control、Sensor)基础上。该系统主要用于控制泵站、流量以及污泥脱水工艺等等。而STAR系统(Krüger公司的专利技术)是建立在SCADA系统之上,是一种用于控制曝气池运行的应用软件系统。在氧化沟中会安装在线检测仪器,从而将主要的污染物参数,如:氨氮、硝酸盐氮、总磷以及溶解氧浓度的信息发送到中心PLC上。由微机程序控制曝气池各阶段的运行时间和曝气模式。因此,图3中所示的4个阶段的具体运行时间是由STAR系统通过曝气池中具体污染物浓度的数据来控制的,但是会有一个最长运行时间。Lundtofte污水厂各阶段的最长运行时间为90min。 另外,如果设备一旦发生问题,程序会自动向技术人员的手机发送短信息以告知其出现技术故障的具体位置。同时,微机程序还会自动向技术人员发送电子邮件告知其具体问题,技术人员可以据此判断是否应该立即处理该故障问题。 污泥处理单元 丹麦污泥处理情况简介 欧盟及丹麦政府非常重视城市污水处理厂所产生的污泥及其处理和排放的问题,并制定了相关的法案,如86/278/EEC 法案、91/271/EEC 法案等。对城市污水厂排放污泥中的重金属以及持久性有性有机物的含量做出了相关的规定。 经过统计后发现,1999—2005 年,丹麦城市污水厂污泥处理和排放都产生了一定的变化,见表 5 所示。可以看出,变化最为明显的是污泥焚烧比例大幅提高和填埋比例明显下降。其中,污泥焚烧比例从1999 年的6%提高到2005 年的25%。上述的四个丹麦大型城市污水厂的污泥都经过焚烧处理。另外,尽管污泥总产量有所提高,但人均污泥产量基本保持不变。 污泥处理 初沉池和二沉池排出的剩余污泥首先进行脱水、絮凝,之后进行厌氧消化。丹麦城市污水厂多采用中温厌氧消化工艺,温度控制在32~37℃,SRT 控制在25~30 天。一般来说,经过厌氧消化后,污泥的固含率约为~3%。 污泥经过厌氧消化后,进入离心机脱水,污泥固含率提高到20%~32%。经过离心脱水后的剩余污泥将会和沉砂池内的污泥混合,并进入焚烧炉。经过焚烧处理后的污泥收集后运送到垃圾填埋场。 生物气 一般来说,丹麦城市污水厂厌氧消化池产生的生物气中甲烷含量在65%左右,而每产生1m3 生物气会削减 kg 干污泥。生物气能够得到有效的收集并回用。回用主要的方式有两种:一是产热、产电,供本厂内部使用;另一部分则出售给附近的工厂或天然气公司等。 废气处理单元 丹麦城市污水厂在污泥焚烧处理过程中,十分重视潜在的大气污染问题。自焚烧炉产生的废气都要经过深度处理后才能排放到大气中。下面以Lundtofe 污水厂为例,简单介绍污泥焚烧后气体深度处理设备和装置。 从焚烧炉中排出的废气首先经过降温后进入旋风分离器,在这一过程中有85%~90%的灰分会从气体中分离出来。随后,气体进入湮灭炉中进行深度处理。在湮灭炉中,首先用水喷浇,使气体进一步降温。在水体内有溶解的NaHCO3 和少量的活性炭。主要目的是使用NaHCO3 吸附SO2、HCl 和HF 气体,并转化为Na2SO4、NaCl 以及NaF。活性炭则用来吸附汞等重金属。最后,经过处理后的气体进入布袋分离器进行固气分离,所有固体连同污泥被运送到垃圾填埋厂,而经过处理后的气体则通过烟筒排放到大气中。3.能耗、化学品消耗及污水厂运行费用 由于丹麦大型城市污水厂采用的工艺、运行方式以及管理结构大同小异,因此污水厂能耗、运行费用等统计数据也存在一定的一致性。对这些数据进行统计核算对于今后我国拟采用或已经采用类似工艺的城市污水厂的设计、运行、管理和评估工作具有一定的价值和意义。 但是,鉴于国情不同,环境和污水管理方式也有所差异,因此,利用单一货币形式(如欧元)来描述污水处理厂的运行费用是不合理的。因此,在运行费用的具体核算上,分以下几方面进行讨论。化学药品以药品使用量作为衡量标准;能量采用kWh 作为衡量标准。 污水处理厂能耗 丹麦大型城市污水厂电耗在35~45 kWh/(PE·年),和~ kWh/m3 污水。而生物污水处理电耗约为~ kWh/m3 污水,占总电耗的30%~50%;污泥处理电耗约占总电耗的30%~40%;而污水提升、机械处理和管理电耗约占总电耗的15%~35%。对于污泥处理来说,处理1kg 干污泥需耗能~ kWh。 化学药品使用量 污水厂化学物质主要用于化学除磷和污泥脱水等。针对化学除磷,不同污水厂采用的物质不同。例如:Lynetten 污水厂采用FeCl3;而Lundtofte 污水厂采用AlCl3。化学物质投加量与污水水质、工艺以及出水指标有直接关系。Lynetten 和Lundtofte 污水处理厂化学除磷的情况见表 6。从表 6 的数据可以看出,在进水TP 浓度基本相当的情况下,采用具有生物除磷功能的Biodenipho 工艺更加节省化学除磷物质量,而且可以获得更好的出水TP 效果。 污水处理厂运行费用 丹麦城市污水厂运行费用主要费为四部分:员工工资、税费、能耗和化学药品费以及运行维护费用。以Lynetten 和Damhus?en 为例,2005 年两个污水厂运行费用为 亿DKK,具体比例分配见图 4。一般情况下,丹麦污水处理厂最大的费用支出为员工工资。同时,在运行维护中还有相当部分是用于场地租用等。另外,丹麦污水处理厂需向政府缴纳污水和污泥处理税费。污泥焚烧以及外运到垃圾填埋场也都需要缴税。在丹麦,只有污泥回用时不用向政府交税。一般来说,丹麦城市污水处理厂污泥处理费用占总运行费用(不含人工费用和税费)的40%~50%。 上述四个污水厂运行费用统计见下表 7。值得一提的是,丹麦平均污水处理费用为15 DKK/m3,这与核算后的城市污水处理厂污水处理费存在较大差异。主要原因是丹麦总污水处理费用不但包括污水处理厂的运行费用,还需计算污水管道的建设和维护费用。而市政污水管道的维护和管理归各行政区。4.结论 丹麦自20 世纪90 年代至今,城市污水处理发生了巨大的变化。这一变化得益于丹麦政府积极执行欧盟91/271/EEC 法案及制定更为严格的相关出水标准。丹麦大型城市污水厂无论是运行工艺还是管理方式比较相似。总结其发展经验和管理体制,对有效数据进行统计并吸收消化对处于发展中的中国城市污水处理是十分有益的。参考文献:[1] 3rd Report from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, as amended by Commission Directive 98/15/EC of 27 February 1998. Access via Internet (20/08/2007):[2] 4th Report from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, as amended by Commission Directive 98/15/EC of 27 February 1998. Access via Internet (20/08/2007): uwwtd_report/final_circa-per/[3] Milj?styrelsen 2005; Punktkilder 2004. Det nationale program for overv?gning af vandmilj?et; Fagdatacenterrapport. (In Danish)[4] Cui Chengwu et al. The Maintenance and Management in Lundtofte Wastewater Treatment Plant, Denmark. China water & wastewater. (In Press)[5] Cui Chengwu et al. The Maintenance and Management in Lynetten Wastewater Treatment Plant, Denmark. Water & Wastewater. (In Press)[6] Henze M., Harremoes P., La Cour J., Arvin E. (2001) Wastewater treatment biological and chemical processes. Third edition, Springer, Berlin,
从总体上看,我国城市污水处理尚处在起步阶段,城市污水处理率还很低。德国1898年便开始建设城镇污水处理设施,现有规模大小不等的城镇污水处理厂10390个,废水处理能力达亿居民当量,相当于日处理废水3000万吨,是其全部居民生活污水排放量的倍。其中,大中型污水处理厂虽仅占总数的,但其废水处理能力却达到亿居民当量,占全部废水处理能力的。1995年联邦德国居民生活污水处理率已达,其中,原东、西德地区分别为和,即占全国人口总数的7269万居民的生活污水已在各类污水处理厂得到净化处理。从总体上看,我国现有城市污水处理厂废水处理效果较好,但脱氮脱磷处理的比例低,剩余污泥的处置不够安全。1995年,德国城镇污水处理厂所排放的废水中,COD浓度小于50mg/l的占废水总量的,BOD浓度小于10mg/l的占;处理后废水均匀浓度为COD41mg/l、BOD7mg/l,耗氧等级为;营养物质浓度也很低,总氮、总磷均匀浓度分别为18mg/l和1mg/l,污水处理厂尾水的排放对水体的影响已很稍微。
207 浏览 4 回答
271 浏览 3 回答
216 浏览 7 回答
93 浏览 2 回答
168 浏览 4 回答
191 浏览 4 回答
223 浏览 3 回答
242 浏览 1 回答
156 浏览 3 回答
219 浏览 5 回答
243 浏览 3 回答
311 浏览 5 回答
229 浏览 7 回答
89 浏览 5 回答
133 浏览 3 回答