推荐下NLP领域内最重要的8篇论文吧(依据学术范标准评价体系得出的8篇名单): 一、Deep contextualized word representations 摘要:We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (., syntax and semantics), and (2) how these uses vary across linguistic contexts (., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals. 全文链接: Deep contextualized word representations——学术范 二、Glove: Global Vectors for Word Representation 摘要:Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global logbilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods. Our model efficiently leverages statistical information by training only on the nonzero elements in a word-word cooccurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a vector space with meaningful substructure, as evidenced by its performance of 75% on a recent word analogy task. It also outperforms related models on similarity tasks and named entity recognition. 全文链接: Glove: Global Vectors for Word Representation——学术范 三、SQuAD: 100,000+ Questions for Machine Comprehension of Text 摘要:We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of , a significant improvement over a simple baseline (20%). However, human performance () is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at this https URL 全文链接: SQuAD: 100,000+ Questions for Machine Comprehension of Text——学术范 四、GloVe: Global Vectors for Word Representation 摘要:Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global logbilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods. Our model efficiently leverages statistical information by training only on the nonzero elements in a word-word cooccurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a vector space with meaningful substructure, as evidenced by its performance of 75% on a recent word analogy task. It also outperforms related models on similarity tasks and named entity recognition. 全文链接: GloVe: Global Vectors for Word Representation——学术范 五、Sequence to Sequence Learning with Neural Networks 摘要:Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to , which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier. 全文链接: Sequence to Sequence Learning with Neural Networks——学术范 六、The Stanford CoreNLP Natural Language Processing Toolkit 摘要:We describe the design and use of the Stanford CoreNLP toolkit, an extensible pipeline that provides core natural language analysis. This toolkit is quite widely used, both in the research NLP community and also among commercial and government users of open source NLP technology. We suggest that this follows from a simple, approachable design, straightforward interfaces, the inclusion of robust and good quality analysis components, and not requiring use of a large amount of associated baggage. 全文链接: The Stanford CoreNLP Natural Language Processing Toolkit——学术范 七、Distributed Representations of Words and Phrases and their Compositionality 摘要:The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 全文链接: Distributed Representations of Words and Phrases and their Compositionality——学术范 八、Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank 摘要:Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network. When trained on the new treebank, this model outperforms all previous methods on several metrics. It pushes the state of the art in single sentence positive/negative classification from 80% up to . The accuracy of predicting fine-grained sentiment labels for all phrases reaches , an improvement of over bag of features baselines. Lastly, it is the only model that can accurately capture the effects of negation and its scope at various tree levels for both positive and negative phrases. 全文链接: Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank——学术范 希望可以对大家有帮助, 学术范 是一个新上线的一站式学术讨论社区,在这里,有海量的计算机外文文献资源与研究领域最新信息、好用的文献阅读及管理工具,更有无数志同道合的同学以及学术科研工作者与你一起,展开热烈且高质量的学术讨论!快来加入我们吧!
2 月 17 日,Rob Yeung 博士发表。17 条评论
Facebook 推特 领英
什么是自然语言处理? 神经语言程序设计 (NLP) 是一种教练方法,由 Richard Bandler、John Grinder 和 Frank Pucelik 在 1970 年代设计。然而,许多循证科学家和心理学家对 NLP 持强烈批评态度,有些人甚至将其添加到所谓的“不可信疗法”列表中。
NLP 创建后,其思想主要以易于阅读的书籍和培训计划的形式传播,旨在帮助人们实现变革和成功。甚至自助作家 Tony Robbins 最初也开始教人们 NLP 技术,直到 1980 年代后期的一场诉讼(由 NLP 共同创造者理查德·班德勒(Richard Bandler)提起)。在庭外和解中,罗宾斯同意为罗宾斯在 NLP 认证的每个人向 NLP 协会支付 200 美元。和解后不久,罗宾斯停止了 NLP 技术的培训,而是创建了自己的方法,他称之为神经联想条件反射 (NAC)。
为什么 NLP 如此有争议? 在心理治疗中,有许多所谓的大师创造了自己的治疗技术。其中一些所谓的专家以一种愤世嫉俗的观点创造了自己的方法——出售疗法以赚钱。这些自称为专家的其他人可能认为他们真的做得很好——即使没有任何科学证据支持他们的说法。
2006 年,一组研究人员进行了一项调查,要求 101 名心理 健康 专业人士对数十种所谓的心理疗法的可信度进行评分。研究人员由约翰诺克罗斯领导,他从罗德岛大学获得临床心理学博士学位。在进行调查时,他是费城斯克兰顿大学的心理学教授。
诺克罗斯和他的团队要求专家(主要由美国心理学会的研究员以及心理 健康 学术期刊的现任和前任编辑)以 1 的等级对各种假设的疗法进行评分(因为“完全没有信誉”) ) 到 5(对于“肯定名誉扫地”)。例如,有一种叫做天使疗法的东西,从业者用它来治疗精神和行为障碍。天使疗法的评分为 - 非常不可信。用于治疗精神或行为障碍的前世疗法评分为 。
NLP 的评分为 。事实上,它被评为比其他疗法更不可信,例如治疗阴茎嫉妒的心理疗法(其得分略低,为 )。甚至用于治疗精神和行为障碍的针灸也获得了 的更有利(即不那么不可信)的评分。
悉尼大学研究员 Anthony Grant 指出,许多研究人员“认为 NLP 不是基于证据的(即几乎没有同行评审的证据表明 NLP 确实有效。然后另一方可能会回应说,从业者知道它有效,因为他们已经亲眼目睹了 NLP 客户的重大变化。”
据推测,即使是使用天使疗法和前世疗法的从业者也相信他们通过他们的方法亲眼目睹了重大变化。然而,有些人可能会争辩说,没有 证据的 单纯 信念 实际上可能更好地被视为妄想。
NLP 从业者接受了多少培训? 许多商业上可用的程序表示,它们可以在大约 12 到 15 天内证明人们成为 NLP 的大师级从业者。但是,考虑到英国和美国的大多数咨询或临床心理学家需要三到五年的时间才能获得资格和认证。
NLP 的现代心理学观点是什么? 研究人员和合格的心理学家大多谴责 NLP。在 2019 年发表在 International Coaching Psychology Review 上的 一篇论文中,一组专家写道:“有许多 NLP 的批评者,他们将 NLP 视为一种伪科学、流行心理学甚至是邪教,没有任何证据证明其有效性。”
根据他们自己对 NLP 主题的 90 篇文章的调查,他们得出结论:“总而言之,没有实证研究为仅基于 NLP 工具和技术的辅导有效性提供证据。”
这很重要。他们没有发现只有少数科学研究支持 NLP。他们发现 没有 纸- 零 , 小人物 , 而不是一个 。
举一个例子,考虑由赫特福德大学心理学教授理查德·怀斯曼领导的一系列调查。NLP 认为,人们的眼球运动可以表明他们的精神状态,甚至在他们撒谎的时候。然而,怀斯曼及其同事收集的数据使他们得出结论:“三项研究的结果未能支持 NLP 的主张。”
在最近的另一篇学术论文中,亨利商学院的研究人员乔纳森·帕斯莫尔 (Jonathan Passmore) 和塔蒂亚娜·罗森 (Tatiana Rowson) 回顾了 NLP 的科学并得出结论:“我们毫不犹豫地认为教练心理学家和那些对循证教练感兴趣的人忽略 NLP 是明智之举品牌支持存在明确证据基础的模型、方法和技术。”
一个由托马斯WITKOWSKI独立检讨使用较强的语言,批评NLP“完全从科学借款或表达式提到它,没有任何科学意义的。它的名字已经可以看出——神经语言编程——这是一种残酷的欺。在神经元层面,它没有提供任何解释,它与学术语言学或编程没有任何共同之处。” 在论文的结尾,他总结道:“NLP 代表伪科学垃圾,应该永远封存起来。”
如果不是 NLP,那还有什么? 英国国民 健康 服务 (NHS) 指出,以认知行为疗法 (CBT) 为基础的自助书籍、应用程序和课程可能会有用。例如,NHS 网站推荐了一些可以免费访问的应用程序和在线工具。在书籍方面,NHS 网站建议:“检查一本书是否由具有丰富经验并在专业机构(例如英国心理学会)注册的顾问或治疗师撰写。”
编辑距离(Minimum Edit Distance,MED),由俄罗斯科学家 Vladimir Levenshtein 在1965年提出,也因此而得名 Levenshtein Distance。
在信息论、语言学和计算机科学领域,Levenshtein Distance 是用来度量两个序列相似程度的指标。通俗地来讲,编辑距离指的是在两个单词 之间,由其中一个单词 转换为另一个单词 所需要的最少 单字符编辑操作 次数。
在这里定义的单字符编辑操作有且仅有三种:
譬如,"kitten" 和 "sitting" 这两个单词,由 "kitten" 转换为 "sitting" 需要的最少单字符编辑操作有:
→ sitten (substitution of "s" for "k") → sittin (substitution of "i" for "e") → sitting (insertion of "g" at the end)
因此,"kitten" 和 "sitting" 这两个单词之间的编辑距离为 3 。
我们将两个字符串 的 Levenshtein Distance 表示为 ,其中 和 分别对应 的长度。那么,在这里两个字符串 的 Levenshtein Distance,即 可用如下的数学语言描述:
以 和 为例,建立一个矩阵,通过矩阵记录计算好的距离:
当 时, ,根据此初始化矩阵的第一行和第一列:
依据上面的公式可以继续推导出第二行:
第二行(index = 1)推导
继续迭代,第三行(index = 2)推导
直至推导出最终结果:
1 递归方式
2 动态规划 递归是从后向前分解,那与之相对的就是从前向后计算,逐渐推导出最终结果,此法被称之为动态规划,动态规划很适用于具有重叠计算性质的问题,但这个过程中会存储大量的中间计算的结果,一个好的动态规划算法会尽量减少空间复杂度。
编辑距离是NLP基本的度量文本相似度的算法,可以作为文本相似任务的重要特征之一,其可应用于诸如拼写检查、论文查重、基因序列分析等多个方面。但是其缺点也很明显,算法基于文本自身的结构去计算,并没有办法获取到语义层面的信息。
由于需要利用矩阵,故空间复杂度为O(MN)。这个在两个字符串都比较短小的情况下,能获得不错的性能。不过,如果字符串比较长的情况下,就需要极大的空间存放矩阵。例如:两个字符串都是20000字符,则 LD 矩阵的大小为:20000 * 20000 * 2=800000000 Byte=800MB。
[1] [2] [3] [4]
345 浏览 6 回答
291 浏览 4 回答
90 浏览 6 回答
140 浏览 4 回答
221 浏览 4 回答
337 浏览 6 回答
118 浏览 4 回答
209 浏览 3 回答
178 浏览 8 回答
356 浏览 4 回答
138 浏览 7 回答
217 浏览 5 回答
145 浏览 5 回答
312 浏览 9 回答
303 浏览 3 回答