温明明1肖波徐行张汉泉
(广州海洋地质调查局 广州 510760)
第一作者简介:温明明,男,1976年出生,1998年毕业于长春科技大学信息工程学院,现任广州海洋地质调查局技术方法所工程物探室副主任,物探工程师,从事海洋工程物探技术方法研究工作。
摘要 随着近海油气不断开发,其后续发展能力明显不足,因此深水含油气盆地的开发将成为必然的发展趋势。深水油气田的井场调查是深水油气田开发过程中的一个主要环节,其勘探技术越来越被人们所关注。本文通过深水井场调查的技术要求分析,结合多次组织和参加井场调查的工作经验,指出深水油气田井场调查的技术难点在于探索海底表面障碍物分布情况、勘测海底地形地貌特征、了解中浅地层结构等这类勘探技术上。由于这些勘探技术受声呐技术特点的限制,国外已经采用了DEEPTOW、ROV或者AUV技术,将一些关键调查设备与海底保持一定的高度来实现勘探技术目标,并已经取得成功的尝试,因此,研究、发展和不断地完善这类“贴底”调查技术十分重要。
关键词 井场调查 勘探技术 近海底多参量勘查 声呐技术
1 前言
最近几年全球对石油的需求增加,导致世界石油价格不断上涨,世界石油价格的大幅波动对世界经济、对出口国和进口国均影响很大。随着我国的经济和现代化建设的快速发展,对于石油等能源的需求也越来越大。中国已经成为了世界上第二大石油消费国和第三大石油进口国。从目前我国经济发展现状来看,石油的进口量将逐年增加。能源问题已经作为国家安全问题对待。我国海域油气资源产量超过4000万吨油当量,海洋油气资源的开发已经成为我国目前油气资源供给的重要组成部分。
随着近海油气不断开发,其后续发展能力明显不足,深水含油气盆地已经作为开发考虑的对象,这也是必然的发展趋势。世界油气总储量的44%将来自深水海域,国外一些大型深水油田已成功地进行开发,深水勘探(钻探)水深和开发作业深度均超过了2000m。2004年7月8日巴西石油公司成功在墨西哥湾2301m水深进行了油气开发,创造了海洋油气开发新的水深世界纪录[1]。我国管辖海域总面积近300万km2,其中深水海域面积超过150万km2,发育沉积厚度大于2000m的沉积盆地有20多个,面积近50万km2。南海北部陆坡区、南沙海域等深水盆地均具有良好的含油气远景,尤其南海南部的南沙海域油气资源极为丰富,预测总资源量达320亿~430亿吨,被誉为继墨西哥湾、北海、中东之后的第四个产油区,成为周边国家甚至美、日等国迫切染指的地区。然而,我国深水海域油气资源仍处在勘探开发的初期,深水勘探(钻探)能力仅达600m,开发作业能力503m,远落后于发达国家[2]。
深水油气资源开发成本极高,深水油气主要分布的陆坡范围具有海底地形地貌起伏多变、浊流沉积发育、沉积结构复杂、构造活动强烈,海底滑坡、沙土液化等地质灾害频发的特征,开发过程海底地震的波动、海底断层活动、海底变形滑坡、深水浊流活动及海啸等对采油平台、浮式生产系统(FPSO)、海底输油管线、海底电缆等都可能造成严重破坏,甚至危及人员的重大伤亡和财产的重大损失,开发前需要全面地了解井场的地质灾害情况。深水油气田的井场调查是油气开发过程中的重要环节之一,掌握先进的井场勘探技术至关重要,因此其勘探技术越来越被人们所关注。由于我国在此领域的工作刚刚开始,深水油气勘探和处理等技术方法仍然处于起步阶段,急需我们去探索和研究。
海洋油气田井场调查的勘探技术是基于水声物理学而发展起来的,测深、浅、中和深部的海底地层勘探以及侧扫声呐勘查设备都是利用声呐技术。这些技术受勘探水深和分辨率相互矛盾的制约。例如当测深仪的工作频率高时,其分辨率和测量的精度也高,但因声信号在水层中的衰减也快,不能适用于水深较大的海域工作;反之,工作频率低,其分辨率和测量的精度相对较差,而声信号在水体中的传播也要远一些,适合于深水海域作业。然而,单纯靠提高发射功率是不能实现长距离声信号传播的目的。由此可见,在深水海域进行勘探时,要保证一定的勘探精度和分辨率,这就要求使用类似侧扫声呐工作频率的设备进行调查,其工作过程与海底需要保持一定距离,使之具有类似浅水海域调查的精度和分辨率,这是深水油气田井场勘查的主要技术难点之一。
本文参照广州海洋地质调查局2007年4月完成的国内首个深水井场调查的技术要求(水深约600m),并对在深圳蛇口召开的深水油气井场调查技术研讨会的资料分析,以及近年来多次参加、组织油气田井场调查的工作经验基础上,通过对相应勘探技术的了解,结合我国调查船只及设备的实际情况,对目前深水井场的勘探技术做一些初期研究。
2 井场调查的技术要求
海上油气田井场调查的技术要求主要是:确定井场邻近的水深、了解海底地形、地貌以及浅层气和浅地层断裂发育情况、中浅地层结构、海底以下1000~1500m深度上的地层构造变化情况、地质灾害因素、海底表面障碍物分布情况等地质地球物理特征,为钻井平台的安全作业和准确确定钻探位置提供可靠的地质评价资料。
近年来,我们的海上油气田井场调查的工作从水深不足百米朝水深二三百米以下的海底加深;目前国际上对深水井场水深还没有一个统一的定义,通常将水深超过500m的油气井场称为深水井场,需要勘探的工作深度将达到3000m。随着调查海域不断地朝深海方向推进,海上勘探工作的技术难度也不断提高。因而,我们正面临着海洋调查中的新要求、新技术和新方法的挑战。
3 调查技术
浅水海域井场调查技术
在浅水海域的油气田井场调查中,通常使用的调查技术有:测深、侧扫声呐、浅层剖面、单道地震、多道地震、地质取样以及导航定位等(图1)。
图1 浅水海域井场调查工作示意图
Shallow-water well site survey sketch map
单波束测深:主要用于确定井场及其附近海域的海底地形特征,常用的有单波束双频测深技术。
侧扫声呐:用于了解海底表面障碍物分布情况以及海底地形地貌特征,常用的是相干侧扫声呐或多波束侧扫声呐技术。
浅层剖面:用于查明海底几十米以内的浅地层结构、浅层气和浅地层断裂发育情况。通常的勘探要求为地层分辨率达到十厘米甚至几厘米。浅层剖面技术已由早期的单频率低频探测发展为线性调频或差分调频探测技术。
单道地震:用于探测海底以下近百米的高分辨率中浅地层结构和浅地层断裂发育情况,通常的勘探要求为地层分辨率1m甚至更高。一般使用多极电火花、长排列的单道信号接收电缆以及信号采集处理器等设备组合,可获取中浅地层结构、浅地层断裂发育的海底信息。
多道地震:用于获取海底以下1000~1500m深度的构造变化情况。通常的勘探要求为地层分辨率数米。多道地震勘探技术相对而言,其系统复杂、结构庞大,而且辅助设备也较多。
地质取样:为了解海底底质情况,通常需要用重力柱状取样或抓斗表层取样,并且还需要一定数量的样品。
深水井场调查技术
深水井场多位于陆坡区,区内海底地形地貌、地质条件相对复杂,又因为在水深500m以上,一些常规的技术方法已无法满足深水井场调查的要求,这使得深水井场的调查难度远远大于常规浅水井场,相应的调查技术方法也需要全面升级。同时,深水浅层水流(Shllow water flow)的存在已经被人们视为新的地质灾害,并认为会严重威胁到钻井平台的安全,调查技术手段要求比常规调查多,除原来的地质取样、单波束测深、侧扫声呐、浅层剖面、单道地震和多道地震调查技术之外,还增加了多波束测深、浅层水流的检测项目,部分项目还要求开展海洋磁力测量来探索海底目标物。
导航定位技术
常规的井场调查通常使用差分GPS导航定位技术来实现。因水深不大而拖曳长度也不大,一些拖曳设备的定位问题可使用归算法来解决。而在深水油气井场调查中,要了解底质取样和拖曳位置,使用归算法来解决长距离的水下设备的定位问题势必会产生较大的误差,影响调查成果的精度,因而必须采用水下定位技术。
由于水下声学定位系统是一种在水下利用声波应答脉冲测量发声器与接收器间的距离从而对设备进行相对定位的系统。根据工作时基线长短可分为:长基线定位系统(LBL)、短基线定位系统(SBL)和超短基线定位系统(USBL)。USBL的基线长度小于声波波长,其换能器阵固定在船上并投放入水中,根据装在待定位设备上的信标发出的回波到达基线阵各元的信号的时间和相位差测量方位和距离,再计算出信标的位置,相对定位精度一般为斜距的~。长基线定位系统(LBL)利用在海底布设3个以上不在一条直线上的换能器组成基线阵,采用标准时钟同步,发射声脉冲,根据距离测量交会的球面定位原理,计算出载有接收器(信标)的运动物体位置,相对定位精度一般在5cm至2m;短基线定位原理与长基线相同,只是基线长度较短,一般安装在调查船或平台上,相对定位精度一般为斜距的左右。在井场调查中,深拖调查(DeeptoW)和水下遥控机器人调查(ROV)系统工作时需要配备USBL技术,水下自治机器人调查(AUV)系统在水下作业时必须配备LBL系统。
测深技术
低频率的单波束测深设备将取代高频率的浅水调查设备来采集水深数据。由于水深较大,在各水层中声速差异较大,需要再增加声速剖面的测量设备,用声速测量剖面资料参与测量水深数据的校正,以达到提高测深的精度。又因为大多数深水井场位于陆坡区,其周边的海底地形地貌特征与大陆架上的油气田井场相比要复杂得多,使用全覆盖、高精度的海底地形测量的多波束条幅测深技术更有利于确定调查区域的海水深度以及完整地探明海底地形地貌特征。
浅地层探测技术
随着调查区域水深加深,少量换能器组合而成的阵列已经无法达到探测的目的,因此要处理好发射能量和分辨率这些技术问题,通常用12或者16个换能器组成的阵列来探测深水海域的海底浅地层结构。多换能器组阵探测系统不仅可加大声波的发射功率,而且还可减小换能器组阵波束角,提高探测的分辨率。在信号发射、接收和处理上可使用FM CHIRP技术来提高地层探测的水平分辨能力和垂直地层的穿透能力。在条件允许的情况下,最好使用窄波束、深穿透和高分辨的非线性差频声呐技术,以获取更高的水平和垂直分辨率。
侧扫声呐调查技术
与其他调查技术不同,侧扫声呐在深水井场和浅水海域井场调查中的技术应用有所差异。全覆盖的多波束测深系统中的侧扫声呐功能由于其声学图像分辨能力不够高,无法满足或者取代对深水海域的海底精密地貌测量和海底障碍物探索等技术要求,该项技术需要作技术调整。根据调查规范和调查需要,侧扫声呐调查中使用的量程范围通常是100m或者200m,拖鱼距海底的工作高度要保持在量程的10%~15%。为了达到较好的探索海底表面障碍物分布情况以及勘测海底地形地貌特征的效果,获得更高的分辨率,必须使拖体能贴近海底工作。这种贴底勘查需要在DeeptoW、ROV和AUV技术的支持下实施。
单道地震调查技术
单道地震调查一般使用组合系统。主要有三个部分,一是由大容量的电容箱、控制电路和释放能量的多极电火花构成的震源;二是长排列的单道信号接收电缆;三为信号采集处理系统。深水井场调查需要更大能量的震源,若到达水深超过1500m时,起码需要用大于5000焦耳能量的震源,而且还需要改变电极的形式以适应这种大功率能量发射的要求。由于井场调查技术要求中,对水平和垂直分辨率要求较高,因此很难用小型的水枪或者GI枪来取代电火花作为震源。使用深拖电火花作为震源也是一种有效的技术手段,可获得更高分辨率的剖面探测图像。在勘探信号接收水听器的电缆中,应选用多水听器(8,16或者24个)构成的单道地震电缆,可获得较好的频响效果以及较高的信噪比。
多道地震调查技术
多道地震调查系统也是由震源、数据处理、监视和记录系统以及较长排列长度的地震电缆三个部分组成,但其系统复杂、结构庞大。为保证水平分辨率,其中的电缆道间距必须小于或者等于。同时选用和配备一些高分辨勘探技术的震源设备,如大容量的水枪、GI枪或者特殊枪阵。通常而言,常规井场调查使用的多道地震系统也适用于深水井场调查,不需要做大的技术改进,可实现1000~1500m深度的地层勘探,了解地层的结构和变化特征。
底质沉积物取样
无论是用抓斗来采表层沉积物样品还是用重力柱状取样器来取柱状沉积物样品,由于没有说明,均不需要做专门的技术改造。但深水井场的工作水深较大,为保证甲板有缆作业的工作效率和取样设备的安全,需要在取样器以上的一定高度上安装PINGER(声脉冲发生器)来监控取样器和海底之间的相对位置。若需要高精度的定位,可使用USBL技术来提高取样器的着底水下定位精度。
测流技术
深水井场调查中另外一个值得关注的问题就是海流对平台的影响。由于在深水海域,复杂多变的海流很容易引起海底变形滑坡、深水浊流等地质灾害,这些地质灾害严重威胁到平台的安全。使用走航式ADCP测量设备进行流速流向的测量或者采用布设海底观测锚系的方式对不同水层的海流进行定期观测,以获取深水井场以及附近海域的海流资料。
4 近海底多参量勘查技术
类似侧扫声呐、海底摄像系统和海洋磁力仪这类调查设备在工作时,必须要贴近海底才能获得较好技术效果和达到技术要求,因此需要通过借助于DeeptoW,ROV和AUV技术来实现技术目标。
DeeptoW 技术
深拖(DeeptoW)系统与浅水海域工作的普通侧扫声呐探测系统相比,其设备安装、操作和维护比较复杂,拖体内可集成包括侧扫声呐在内的其他探测设备。整个拖曳需要在母船牵引下作业;为了在一定水深的海底保持平稳地工作,要配备压沉器(depressor)、零浮力缆、正浮力拖体、稳定翼等装置;由于需要实时传输大量的调查数据,为了确保长距离的信号通信的质量,降低信号在传输过程中的衰减,通常配备几千米铠装光缆作为拖缆;收放设备需要配备大型绞车、A型架等辅助设备,甲板上需要配备强大的监控系统。为了提高调查效率,通常的深拖系统是一个载体,可集成其他调查技术,例如多波束测深系统、浅地层剖面仪、光学摄像系统、磁力仪、深拖电火花震源和定位系统等,进行多手段多方法同步调查。此外,深拖的拖体距母船远达几千米,需要USBL技术的水下导航定位系统支持下作业。
ROV技术
与DeeptoW比较,遥控机器人(ROV)是一个多用途的、需要有缆作业的、遥控运载系统。其水下载体可在甲板操作系统的指挥下,在一定距离内灵活运动。它可集成侧扫声呐、多波束声呐、海洋磁力仪、浅地层剖面仪以及光学观测设备,进行海底综合探测[3],这也是目前被国外广泛采用的技术方法。ROV技术的主要特点是:①采用数量较多的推力器,通常为4~7个推进器,多的可达10个。由于采用计算机自动控制技术,其水下载体推力器的控制能力大大提高,使得ROV平衡性好、灵活性高;②配备高精度的水下定位技术(主要是USBL技术)进行水下作业;③使用了光纤通讯技术,使得信号传输能力十分强大,从而也提高了计算机信号处理能力;④吊放系统大部分都有带止荡装置的A型吊和脐带绞车。脐带则采用铠装、动力(高压)、光纤合一的重力缆;⑤配备强大的专用绞车和甲板辅助装置进行工作;⑥有较大的负荷能力,以携带各种勘探、取样的设备和存储样品;⑦目前的ROV的体积和功率都比早期的ROV有了较大的增加,机动能力大大提高,负荷能力也变得较大;⑧结构模块化,可根据项目的技术要求,灵活地对各种调查设备进行技术集成,安装所需的调查设备。此外还可以安装机械手进行水下取样,了解海底底质分布和查明海底障碍物[4]。
AUV技术
水下自治机器人(AUV)是一种无缆的、可自携动力和能按设计程序进行操作的自治式潜水器。它是一个调查设备的集成载体,可集成多波束测深系统、浅地层剖面仪、光学摄像系统、侧扫声呐等多种调查设备,可用于深水井场调查的勘探设备。它在运行过程中通过声通讯系统从水面接收改变航向、深度、收集数据等工作指令而进行调查观测,来实现海底目标物搜索、地形地貌勘察、地层结构勘探以及其他观测、取样、打捞等一系列作业的“水下机器人”(图2)。
AUV主要由载体系统、控制系统、水声系统及收放系统四大部分组成。它一般艏部装有垂直推进器和侧移推进器,艉部装有水平推进器,因而机动性强,自动定向定深快、准、精,为声光探测系统在深水中的稳定性和准确性创造了极其有利的条件。机器人装有长基线声学定位系统和声学发射应答器,因此系统本体在深水中的运动轨迹清晰,并可通过长基线定位系统对本体实施8道控制命令。系统本体所载传感器和探测系统齐全,可实时记录下温度、盐度、深度等参数。机器人具有多CPU、多级递阶控制结构,能方便地修改及编入程序,可预编程序航行,还可自动记录各种运动和功能及图像参数(黑匣子)。机器人还有独特的回收和释放本体的收放系统。
图2 AUV结构图
AUV structrue map
AUV需要水下定位技术中的长基线水下定位系统(LBL)的导航来工作。LBL工作需要在海底布设3个以上不在一条直线上的发声器组成基线阵。LBL的命令指挥系统安装在调查船上。LBL是AUV工作不可缺少的配套设备。其工作的主要技术特点:①耐高水压的动态密封结构和技术;②精度更高、误码率更低、作用距离更大的水声通信能力;③最大工作水深达到6000m以上;④水下航速超过6节;⑤水下续航能力超过60小时;⑥采用数量较多的推力器,包括垂直、水平、侧推等多种类型,由于采用计算机自动控制技术,其水下载体推进器的控制能力大大提高,使得现代的AUV平衡性更好、灵活性更高;⑦配备高精度的水下定位技术(主要是LBL技术)进行水下作业;⑧结构模块化,可根据项目的技术要求,灵活地对各种调查设备进行技术集成,安装所需的调查设备。例如可装备的深水油气井场调查需要的定位、浅地层剖面仪、侧扫声呐和多波束测深设备等;⑨独特的回收和释放本体的收放系统,发生局部故障或丧失自航能力时,它能自动抛载上浮至水面,且自动抛起应急无线电发射天线和亮起急救闪光灯[5]。
对比深拖系统、ROV和AUV三种设备中,前两者具有可进行实时数据传输、实时控制、没有动力限制等优点,但是需配备大型绞车、工作速度较慢、技术要求高和操作的灵活性不够。后者作业因没有拖缆的约束而范围较大,工作更加灵活、方便。但其弱点也很明显:首先是不能实时数据传输,只能在特殊情况下可通过声学modem将重要数据发送到甲板控制中心,AUV行动的重要命令是通过甲板控制命令单元发送信号来运行的;其次,水下机器人的回收至今仍是一个没有完全解决的问题,尤其是在深海使用的AUV设备的回收更加艰难;再次,AUV的能耗很大,它既不能采用太阳能电池,也没有脐带缆不断地供电,只能靠自带的蓄电池,从而限制了它在水下的工作时间;最后是AUV以及相应水下定位系统价格昂贵,技术的引进还受出口许可的限制。因此,尽管目前AUV技术还存在许多缺点,但它对调查船舶依赖性较小,而且具有较高的灵活性和可扩展性,因而具有无法比拟的优越性,随着技术水平的不断提高,其技术的不断发展和完善,AUV技术必将在深水井场调查中起着越来越重要的作用。
5 认识和结论
从深水井场调查项目技术要求、调查技术以及相关的辅助调查技术分析,根据目前国内海洋调查单位的勘探技术装备情况,我们认识到开展深水油气井场调查仍然具有一定的差距。尽管测深、浅层剖面、单道地震、多道地震、地质取样等勘探技术比较成熟,只要作一些技术升级可以实现技术目标;而当务之急需要发展的重点在于提高深水井场的海底精密地貌测量、海底障碍物探索、浅地层结构探测的综合调查技术能力,主要是包括近海底多参量勘查和配套的水下定位技术。主要有以下几点:
1)深水油气井场调查所需要的手段和浅水海域的一些油气田井场相比,增加的调查项目不多,除需要进行海流测量之外,还需增加多波束海底地形地貌测量;而这些技术国内装备较多,工作方法也比较成熟。
2)多道地震、地质取样等调查项目的技术要求没有变化,但用于中、浅地层剖面勘探的浅地层剖面仪和单道地震勘探设备需要做一些技术升级;
3)用于探测海底障碍物和海底地貌特征的侧扫声呐和海洋磁力测量项目需要在近海底多参量勘查技术支持下作业,但这些技术目前国内开展得很少,尤其是深海海域几乎是空白。因此,需要加强该方面技术和方法上的研究,尤其是对ROV和AUV技术、方法以及应用领域和集成技术的研究工作;
4)近海底多参量勘查技术离不开USBL和LBL等水下定位技术,它们将成为深水油气井场勘探的关键技术,需要加快超短基线定位系统、长基线定位系统的技术方法和应用研究工作。
随着科学技术的发展和进步,海洋深水油气开发的要求也将发生相应的变化;因此我们要跟踪国际上海洋调查技术的最新发展,积极开展技术调研,技术方法以及应用研究,同时也关注和加强对一些目前还没有受人重视的调查技术以及方法研究,例如,深水海底的原位CPT探测技术等领域。在研究深水油气井场调查技术的基础上,也积极开展对深水海底管线路由调查技术方法的研究,为参与我国即将开展的深水油气开发做好技术储备。
参考文献
[1]吕福亮,贺训云,武金云,孙国忠,王根海.全球深水油气勘探简论.海洋油气地质,2006,4期
[2]孙清,连琏.中国深水海域油气及相关资源勘探开发进展及关键技术.中国海洋大学学报(自然科学版).2005,6期,923~927
[3]燕奎臣,俞建成,张奇峰.深水油气开发中的水下机器人.自动化博览,2005,5期
[4]彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用,2004,4期
[5]李晔,常文田,孙玉山,苏玉民.自治水下机器人的研发现状与展望.机器人技术与应用,2007,1期
The Study on The InveStigation Technique of Oil and GaS Field Well Site in Deep Sea
Wen Mingming Xiao Bo Xu Xing Zhang Hanquan
(Guangzhou Marine Geological Survey,Guangzhou,510760)
Abstract:With the continuously exploit of offshore oil and gas,the sustainab1e developing capability appears to be more and more it becomes the tendency for recovering the oil and gas in the deep sea a key Procedure for exploiting oil and gas in the deep sea,the investigation of Well site is being Paid much more attention analyzing the technique elements and some Practical investigations for Well site in deep sea,this paper Points out that the main problem for deep sea Well site investigation lies in the discovering the barrier,surveying the topography and Physiognomy of the sea floor and finding out the moderate to shallow structure of the overseas,some key equipments,such as DEEPTOW,ROV and AUV have been introduced for overcoming the shortcomings of tools are generally kept certain distance to the sea floor when working and good success has been it is of great significance to study and improve this kind of near sea floor technique for deep sea Well site investigation.
Key Words:Well site survey Exploration technique Near sea floor survey of multiple Parameters Sonar technique
轮机工程技术论文范文篇二 燃气轮机在热电联产工程中的应用状况分析 摘要: 燃气轮机是21世纪乃至更长时间内能源高效转换与洁净利用系统的核心动力装备.介绍了燃气轮机的发展现状及其在热电联产工程中的应用,简述了联合循环和简单循环燃气轮机电厂的基本组合方式,并列举了目前应用在热电联产工程中的几种主要的燃气轮机.阐述了燃气轮机相对于常规火电机组的优点,分析了影响燃气轮机在热电联产工程中推广的因素,并对我国燃气轮机的发展前景进行了展望. 关键词: 燃气轮机; 联合循环电厂; 热电联产 中图分类号: TK 479文献标志码: A Analysis of the application of gas turbines in heat and power cogeneration projects SUN Peifeng, JIANG Zhiqiang (1. China United Engineering Corporation, Hangzhou 310022, China; 2. China Huadian Corporation, Beijing 100031, China) Abstract: The gas turbine is the core equipment of highefficiency clean energy systems in the 21st century and even longer period of time. The current situation of gas turbine development and its application in heat and power cogeneration projects were showed in this paper. Two types of application of gas turbines in heat and power cogeneration projects were briefly introduced, namely, the simple cycle gas turbine power plant and the combined cycle power plant, and gas turbines widely used at present in heat and power cogeneration plants were enumerated. The advantages of the gas turbine plant compared with conventional coalfired power units were described and factors which could influence the application of the gas turbine were analyzed. In addition, the prospects for the development of gas turbines in China were evaluated. Key words: gas turbine; combined cycle power plant; heat and power cogeneration 燃气轮机由压气机、燃烧室、透平、控制系统和辅助设备组成.燃气轮机的设计是基于布莱顿循环.压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气送入燃烧室,与喷入的天然气混合,并点火燃烧;燃烧后产生的高温烟气随即流入燃气透平中膨胀做功,推动透平带动压气机叶轮一起旋转.加热后的高温燃气的做功能力显著提高,因此,透平在带动压气机的同时,还有余功作为燃气轮机的输出功输出. 由于燃气轮机的工质是高温烟气而不是水蒸气,故可省去锅炉、冷凝器、给水处理等大型设备.因此,燃气轮机电厂附属设备较少,系统简单,占地面积较少. 燃气轮机可分为重型燃气轮机、工业型燃气轮机和航改型燃气轮机三类.重型燃气轮机的零件较为厚重,大修周期长,寿命可在10万h以上,主要用于满足城市公用电网需求,例如日立的H25和H80系列燃气轮机、通用电气的F级燃气轮机、西门子的SGT-8000系列燃气轮机、三菱的M701系列燃气轮机和阿尔斯通的GT系列重型燃气轮机等.工业型燃气轮机的结构紧凑,所用材料一般较好,燃气轮机的效率较高,例如索拉的T130燃气轮机和西门子SGT-800燃气轮机,常用于热电联产工程.航改型燃气轮机是由航空发动机改装而成的燃气轮机,在航空领域运用较多,但也有应用于发电及相关工业领域,例如通用电气的 LM 系列航改型燃气轮机等.航改型燃气轮机的结构最紧凑,最轻巧,效率最高,但寿命较短[1-2]. 燃气轮机自上世纪30年代诞生以来发展迅速.当今国际上最新型的G型燃气轮机和H型燃气轮机,单机功率已达到292~334 MW,发电热效率已达到.其中,由G型燃气轮机组成的联合循环单机功率可达489 MW,发电热效率可达;由H型燃气轮机组成的联合循环机组的发电热效率可达60%[3-5].H型燃气轮机组成的联合循环机组是目前已掌握的热-功循环效率最高的大规模商业化发电方式.不仅如此,燃气轮机与以煤为燃料的蒸汽轮机相比,它具有重量轻、体积小、效率高、污染少、启停灵活等优点.燃气轮机发电机组能在无外界电源的情况下迅速启动,机动性好.在电网中用它带动尖峰负荷和作为紧急备用电源,还能携带中间负荷,能较好地保障电网的安全运行,所以得到广泛应用[6]. 国内外科技界与产业界已经认识到燃气轮机将是21世纪乃至更长时期内能源高效转换与洁净利用系统的核心动力装备. 1燃气轮机在热电联产工程中的应用方式 燃气轮机在热电联产工程中的应用形式主要有两种:一种是燃气轮机联合循环热电厂;另一种是燃气轮机简单循环热电厂. 燃气轮机联合循环热电厂由燃气轮机、余热锅炉、蒸汽轮机(背压式、抽背式或者抽凝式)和发电机共同组成.燃气轮机排出的做功后的高温烟气通过余热锅炉回收烟气中的热量而得到高温水蒸气,水蒸气注入蒸汽轮机发电.蒸汽轮机的排汽或者部分在蒸汽轮机中做功后的抽汽用于供热,形式有:燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环;燃气轮机、蒸汽轮机推动各自的发电机的多轴联合循环.单轴的燃气轮机联合循环电厂规模较大,例如通用电气的9F系列机组.而多轴的联合循环机组常见于中小型的燃气轮机联合循环电厂.因此,对于电厂规模相对较小的热电联产工程来说,常选择多轴的燃气轮机联合循环机组. 燃气轮机简单循环热电厂由燃气轮机和余热锅炉组成.该类型燃气轮机热电厂不配置蒸汽轮机,通过余热锅炉直接对外供热.因此该类型燃气轮机热电厂发电热效率相对联合循环燃气轮机热电厂较低,约为30%~35%之间;热电比和供热成本的指标方面,简单循环燃气轮机热电厂也低于联合循环燃气轮机热电厂[7]. 由此可见,燃气轮机联合循环可大大提高发电厂整体发电热效率.即使只有燃气轮机和余热锅炉组成的不配置蒸汽轮机的简单循环燃气轮机发电厂,其发电效率也高于常规的小型燃煤热电厂. 2热电联产工程中燃气轮机机型选择 热电联产工程遵循“以热定电”原则,首先满足外界对蒸汽负荷的需求,一般对发电量的需求相对较少.因此,对于热电联产工程来说,大功率的重型燃气轮机使用相对较少,常配置一些中小型的燃气轮机. 世界主要的中小型燃气轮机有:索拉的T130燃气轮机;日立的H25和H80燃气轮机;通用电气的6F和LM系列的航改型燃气轮机;西门子的SGT-800燃气轮机.各机型的主要技术参数如表1(见下页)所示(表中数据来自各个燃气轮机厂家产品宣传手册,且会因计算的天然气热值等参数变化而发生微小的变化). 表1各中小型燃气轮机相关性能参数 Performance parameters of some gas turbines 表1中,H25,H80 和6F为重型燃气轮机;SGT-800和T130为工业型燃气轮机;LM6000为航改型燃气轮机.从表1可知,工业型和航改型燃气轮机单机发电热效率相对重型燃气轮机的单机发电效率明显更高,但燃气轮机的排烟温度相对较低.由于排到余热锅炉的高温烟气所包含的热量相对较少,因此对于整个联合循环热电厂,工业型和航改型燃气轮机联合循环热电厂的整体发电热效率反而低些[8-9].简单循环的燃气轮机热电厂若选择工业型燃气轮机及航改型燃气轮机,其热电厂发电热效率会较高. 对于配置蒸汽轮机的燃气轮机联合循环,重型燃气轮机因其排烟温度较工业型燃气轮机和航改型燃气轮机高,排到余热锅炉的高温烟气所包含的热量相对较多,余热锅炉产出的供蒸汽轮机发电用的高温高压的蒸汽也更多.因此,重型燃气轮机联合循环整体发电热效率比工业型燃气轮机和航改型燃气轮机联合循环的发电热效率高.燃气轮机联合循环热电厂中大多选择重型燃气轮机. 从能量的充分利用和逐级利用角度讲,相比于燃气轮机简单循环热电厂,燃气轮机联合循环热电厂更具有优势.目前我国燃气轮机热电联产工程中,大多选择重型燃气轮机组成的联合循环燃气轮机热电厂,如浙江省的某热电厂,采用6F级燃气轮机匹配余热锅炉和蒸汽轮机组成燃气轮机联合循环机组对外供热供电,燃气轮机联合循环热电厂整体发电热效率约60%. 但是对于某些对占地面积有严格要求的场合,如海上油气平台井等,一般可选择结构紧凑、效率高的工业型燃气轮机或者航改型燃气轮机机. 具体燃气轮机机型的选择可根据各工程的实际情况进行分析、计算、确定,如热电厂的对外供热参数和供热量、装机容量、机组数量、占地面积、整体热效率等. 3燃气轮机联合循环热电联产工程相对于常规火力发电热电联产的优势[10] 相对于常规燃煤的小型火力发电的热电联产电厂,燃气轮机联合循环热电厂的优势主要有: (1) 高效:燃气轮机联合循环的发电热效率已经达到甚至突破60%,这是一般常规火电机组无法比拟的,甚至高于目前最先进的超超临界机组而稳居各类火电机组之首. (2) 单位造价低:燃气轮机联合循环机组单位容量造价约400美元·kW-1,而常规火电机组造价为600~1 000美元·kW-1;若我国国产燃气轮机的制造加工水平进一步提升,燃气轮机联合循环机组单位容量造价还有非常大的下降空间. (3) 低排放:燃气轮机联合循环不排放SO2以及飞灰和灰渣;NOx的排放量也非常低,一般都可以达到 mg·m-3以下,甚至可以根据需要达到小于 mg·m-3的水平,CO2的排放量可以做到 mg·m-3;环保性能居于现有各种火电机组之上. (4) 节水:燃气轮机联合循环机组以燃气轮机发电为主,燃气轮机发电机功率占总容量的70%,联合循环机组所需用水量约为常规燃煤机组的1/3.这在某些缺水的地区显得尤为重要.若选择燃气轮机和余热锅炉配置的简单循环,整个电厂对机组冷却水量的需求相对于常规火电厂的冷却水量更是大幅度减少. (5) 省地:燃气轮机联合循环机组因附属设备较少,无需储煤场、输煤设施,占地面积仅为加脱硫装置的常规火电厂的1/3.这在城市边缘及城区的供热电厂显得尤为重要. (6) 建设工期短:燃气轮机联合循环机组最适合模块化设计,燃气轮机各部件模块可工厂化生产,运至现场吊装,因而大大缩短了燃气轮机电厂的建设工期. (7) 调峰性能好:通过余热锅炉的旁路烟囱,不运行蒸汽轮机及发电机组的情况下,一般在20 min 内就能达到燃气轮机及发电机组的100%负荷,而燃气轮机及其发电机组负荷占整个燃气轮机联合循环电厂额定负荷的70%左右,这保证了燃气轮机联合循环的良好调控性能,实现机组的日启夜停和调峰功能. (8) 操作运行和维护人员少:因为燃气轮机联合循环电厂自动化程度高,采用先进的控制系统,电厂对员工数量的需求大幅下降.一般情况下占同容量常规燃煤电厂人员的20%~25%就足够了. 4影响燃气轮机在热电联产工程中推广的主要因素 燃气轮机联合循环电厂在国外已经得到了普遍发展,近几年已占据美国电力市场的重要地位,欧洲的燃气轮机联合循环电厂也获得了长足的发展.目前我国燃气轮机联合循环电厂能否获得大力推广和发展,主要受制于如下三个因素: (1) 我国能提供多少天然气资源供燃气轮机发电工业使用;当前国内已有部分燃气轮机联合循环电厂因受制于燃料供应,每年运行的时间远远少于常规燃煤机组. 2012年,随着“西气东输”二线最后几条干线的建成投产,整个输气管道实现每年输气300亿m3.未来中国甚至有可能规划修建“四线”或者“五线”,进一步便于西部地区的天然气输送到东部地区开发利用. 另外,海上(东海、南海)天然气的开发、沿海港口城市液化天然气(LNG)的进口,也为联合循环发电扩充了气源供应条件.国内已经探明了华北、东北、西北三大煤层气资源储量,并将逐步开采. 随着天然气来源渠道的扩大,燃气轮机联合循环电厂的应用范围将大大突破西气东输管网和海上天然气所能影响的地区. (2) 如何合理确定天然气价格,使燃气轮机联合循环发电成本能够与严重污染的以煤为燃料的常规火电相竞争. 必须指出,天然气的价格对燃气轮机及联合循环的运行成本有着决定性的影响.在燃气轮机三项发电成本的组成中(设备折旧成本、机组运行维护成本、燃料成本),燃料成本的比例高达60%~65%,即使在天然气的产地,运输过程费用大为降低,天然气价格相对东南沿海地区更加便宜,其成本占燃气轮机发电成本的比例仍然是非常高的[4].在天然气价格居高不下的今天,燃料成本高已经成为制约燃气轮机发电大力推广的一个关键性因素. 当前,作为工业企业及城市基础设施的重要组成部分的许多中小型燃煤热电厂,通常地处城市之中或者城市郊区,因此不可避免地会对当地大气环境质量产生很大影响.中小型燃煤热电厂改造为燃气轮机联合循环热电厂,对当地环境质量的改善效果非常明显,也最容易得到人民群众的接受和支持. 热电厂的燃料从煤炭改造为天然气,虽然合理调整了能源结构,提高了能源利用效率,减少了煤炭运输环节的损失和浪费,但是对燃气轮机联合循环热电厂来说,燃料成本必然要增加,能源代价必然会提高,因此争取群众和企业的理解和参与,合理分担部分天然气成本因素,是解决天然气市场和成本关系的一条合理途径. 政府在制定燃气轮机联合循环热电厂上网电价和外供蒸汽价格时,应考虑到燃气轮机的环境效益,适当提高上网电价和外供蒸汽价格,这也是对天然气成本过高的一种消化. (3) 从长远的角度看,我国燃气轮机整体行业水平的提高是决定我国燃气轮机及联合循环电厂能否大力推广的一个重要因素. 燃气轮机的发展水平代表着一个国家的重大装备制造业的总体水平.当前我国的燃气轮机技术水平与世界先进水平之间的差距还很大,燃气轮机的核心部件依赖于进口,燃气轮机的每次大修花费很大.若某些燃气轮机的大修只能运回美国等发达国家进行,则其费用更大. 近年来,为了推动燃气轮机工业的发展,按照“市场换技术”的原则,我国对规划批量建设的燃气轮机发电站工程项目采取“打捆”式招标采购模式,由国外先进燃气轮机制造企业与国内制造企业相互结合组成联合体,进行燃气轮机联合循环电站工程项目的竞争投标,以吸收和引进国外先进技术.在这一过程中,我国同时引进了世界三大动力集团(通用电气、西门子、三菱)的F级重型燃气轮机.在实现燃气轮机设备制造本土化和国产燃气轮机技术开发方面都取得了良好的成果.在吸收和引进国外先进燃气轮机技术的基础上,逐步实现了燃气轮机联合循环电站设备研发和制造的国产化、本地化和知识产权自主化[11-12]. 2008年,我国具有完全自主知识产权的110 MW级R0110燃气轮机进行了点火及实验验证,其性能已经接近于目前国际上先进的F级燃气轮机,对我国的燃气轮机设计、制造和加工的整体水平是一个巨大的提升[13-14]. 目前,我国燃气轮机技术水平与国际先进水平之间的差距正在不断缩小,我国的燃气轮机自主研发、生产制造等方面取得了重大进展.2012年9月12日,上海市科委重大专项课题“高温合金叶片制造技术研究”通过专家验收,这标志着我国在燃气轮机核心部件国产化、自主化生产的道路上迈出了坚实的一步. 从制约燃气轮机联合循环电厂发展的三个因素及我国目前的相应情况可知,我国大力发展燃气轮机联合循环的条件已经具备,燃气轮机联合循环电厂的快速发展在近期将成为可能. 5总结 实现节能减排,提高能源利用率是我国能源结构调整的目标.随着我国天然气资源的开发、利用及液化天然气资源的引进,我国燃气轮机联合循环机组将不断增加.燃气轮机联合循环以其高效、清洁和灵活的特点,必将成为我国未来大力发展的电厂类型. 目前可用于热电联产的中小型燃气轮机容量和整个热电厂供热能力与我国广泛使用的蒸汽轮机热电机组的规格十分接近,因而可在不改变外部系统,不增加发电容量和不间断供热、发电的前提下,以较短的时间、较低的投资和较合理的电、热成本实现对热电厂以气代煤的改造.这也是燃气轮机联合循环热电厂可获得大力推广的现实条件. 总之,燃气轮机联合循环机组在我国电力工业中的作用将逐渐增强,发展燃气轮机联合循环热电厂任重而道远,但是前景是非常光明的. 参考文献: [1]李孝堂.燃气轮机的发展及中国的困局[J],航空发动机,2011,37(3):1-7. [2]马悦,纪锦锋.燃气-蒸汽联合循环电站机组配置及选型分析[J].能源工程,2011(6):52-57. [3]蒋洪德.重型燃气轮机的现状和发展趋势[J].热力透平,2012,41(2):83-88. [4]清华大学热能工程系动力机械与工程研究所,深圳南山热电股份有限公司.燃气轮机与燃气-蒸汽联合循环装置[M].北京:中国电力出版社,2007. [5]刘红,蔡宁生.重型燃气轮机技术进展分析[J].燃气轮机技术,2012,25(3):1-5. [6]张荣刚,李文强.浅析燃气轮机在电力行业中的应用[J].企业技术开发,2011,30(10):122-123. [7]徐迎超,阎波,樊泳,等.燃气-蒸汽联合循环(CCPP)发电在首钢迁钢公司中的应用[J].冶金动力,2012(1):27-29. [8]刘祖仁,李达,张阳.海上燃气轮机余热资源计算[J].中外能源,2012,17(5):99-103. [9]李达,张阳,孙毅.海上冷、热、电、惰气四联供护技术探讨[J].石油和化工节能,2012(5):11-14. [10]黄勇.我国发展联合循环机组的背景和条件[J].中国科技博览,2011(29):372. [11]刘华强,汪晨晖.燃气轮机在我国应用情况分析[J].中国新技术新产品,2012,(6):149. [12]杨连海,沈邱农.大型燃气轮机的自主化制造[J].燃气轮机技术,2006,19(1):11-14. [13]崔荣繁,陈克杰,郭宝亭.R0110重型燃气轮机的研制[J].航空发动机,2011,37(3):8-11. [14]包大陆.R0110重型燃气轮机气缸结构研究[J].中国新技术新产品,2012(9):109. 看了“轮机工程技术论文范文”的人还看: 1. 轮机工程技术个人简历免费模板 2. 船舶轮机管理论文 3. 船舶最新技术论文 4. 农业机械技术论文 5. 电厂工程技术管理论文
王荧光
( 中油辽河工程有限公司 辽宁盘锦 124010)
摘 要: 由于煤层气田“低产、低压、低渗”和地区地形复杂,相对高差较大的特点,不同程度地加大了工程设计与建设的难度,开采与输送成本相当较高。如继续沿用传统技术和石油天然气工程相关标准,将无法大幅度降低工程投资、减少操作成本、节省土地,无法实现煤层气田的效益开发。根据煤层气田集输工艺特点,坚持地面与地下充分结合的原则,研究出了一套先进合理、经济适用并符合中国煤层气特点的煤层气田地面集输技术 “枝上枝‘阀组布站’”工艺技术。并从集输半径、压缩机的选型、管材的选择、节能和水力学等方面进行了研究。结果表明新技术的应用极大地改善了流体流动环境,简化了流程。
关键词: 煤层气 地面集输 低压 低产 低渗 节能
基金项目: 国家科技重大专项项目 39 ( 20092 ×05039) 资助。国家高技术发展项目 “沁南煤层气开发利用高技术产业化示范工程”资助。
作者简介: 王荧光,男,工程师,2005 年毕业于辽宁石油化工大学,化学工程与工艺专业,硕士学位,现主要从事石油天然气工程设计及研究工作。地址: ( 124010) 辽宁省盘锦市兴隆台区石油大街 93 号。电话: ( ,; E mail: wangyingguang7@ 126. com.
Ground Gathering and Transportation Technology of Coal bed Methane ( CBM)
WANG Yingguang
( PetroChina Liaohe Petroleum Engineering Co. ,Ltd. ,Panjin 124010,Liaoning ,China)
Abstract: Exploitation and construction of CBM field has just started up stage in china. Neither specification nor successful experience can be learnt for design of CBM field yet. It is inevitable that copying indiscriminately the Petrleum Industial Standards leads to increase project investment,which Lowers the whole economic benefit of the CBM field. Technologies of independent Innovation are formed in Panhe CBM field in the South Qinshui basin in accordance with the characteristics of low yield,low pressure,low permeability,relative complicated topography and large height difference,etc. The main contribution includes the following aspects: diamond well spacing,run- ning in tandem between two wells,simple measurement at valve block,gas collection under low pressure,cent ral- ized turbocharged,which is called“multi branch manifold”disposal station to own its special ground const ruc- tion style. The new technology is character by low investment,quick results,convenient for managing and maintai- ning,fewer operators & equipments and less energy consumed,active organization,environmental protection and less land occupation,etc.
Keywords: coal bed methane,ground gathering and transportation,low pressure,low production,low per- meability,energy saving
引言
我国油气资源短缺,2010年中国天然气供需缺口达到(210~250)×108m3,而成分、热值与常规天然气相似,且资源丰富的煤层气自然是目前最现实的天然气接替资源。目前,煤层气地面已实现大规模商业化开采的国家仅为美国和加拿大,其中美国是煤层气商业化开发最为成功、煤层气产量最高的国家。我国由于煤层气田“低产、低压、低渗”和地区地形复杂,相对高差较大的地势特点,如继续沿用传统的集输技术,将无法实现煤层气田的效益开发,减慢了我国煤层气产业进入实质性商业化生产的进程。所有这一切,都说明,要达到煤层气田高效低成本的规模性开发,实现我国煤层气工业自主创新的要求,就必须研究出一套先进的全新工艺技术来指导目前及今后的煤层气田的地面工程建设。因此根据国内煤层气资源和开发情况,以实现大幅度降低煤层气田地面建设工程投资、减少操作成本、节省土地和煤层气田的效益开发为目标。通过对煤层气田集输工艺特点的详尽分析,坚持地面与地下充分结合的原则,紧紧围绕煤层气集输工艺技术开展大量的创新、研究、比选等工程技术攻关工作,研究出了一套先进合理、经济适用并符合我国煤层气特点的煤层气田地面集输技术———“枝上枝'阀组布站'”工艺技术。新技术突破了从我国解放到现在的60多年间标准规范中一直规定的采气管道长度不宜大于5km的限制,极大地降低了投资、能耗和操作复杂程度,多项指标均处于国际先进水平。
1 煤层气地面集输工艺新技术
“枝上枝'阀组布站'”工艺技术的原理[1]
图1“枝上枝'阀组布站'”工艺技术原理图
“枝上枝'阀组布站'”工艺技术的原理[1]
“枝上枝'阀组布站'”工艺技术(图1)是对传统的布站技术的挑战,它将集气计量站改为阀组,而阀组在天然气集气干管与大量采气支线之间形成了结点,通过这个节点将若干条采气管道中的天然气集中到集气干管中。集气站的外输管道就像是树干,阀组到集气站的集气支线就像是树枝,每一个阀组又像树枝上的结点,而所有与结点连接的采气管道就像是小的树枝。新技术与传统技术之间的本质区别在于:传统技术是用一个站(有值班间、仪表、电气、设备、门卫、维修、围墙及大门等有人值守的站),把10~20口采气管道汇集在一起;新技术是用一个阀组(通常位于采气井口周边,相当于一个普通管件)把大量的采气管道汇集在一起,理论上讲,新技术的应用取消了传统技术中需要建设的无数个有人值守的站,最重要的是极大地简化了流程和投资。
“枝上枝'阀组布站'”工艺技术的理论验证
按允许压降计算出的采气半径
采用国内公认的《油气集输设计规范》中规定使用的威莫斯(Weymouth)公式,根据实际压降计算得:“枝上枝”阀组布站中采气井口至阀组部分长度,阀组至集气站,采气管道总长;传统布站中采气管道总长(图2)。
图2 不同布站方式采气半径计算示意图
“枝上枝”阀组布站采气半径较传统布站方式增加的原因分析
(1)阀组布站与传统分散增压布站非共有管段的采气管道长度之比Y/Z的理论推导。管道共有段根据《油气集输设计规范》的威莫斯(Weymouth)公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
将其两侧平方并变形得到如下公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
在本计算中两种布站方法管道共有段的(P12-P22)/△ZT可看成常数,因此根据实际计算数据得“枝上枝”阀组布站(d8/3)1/传统布站(d8/3)2为
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
“枝上枝”阀组布站(1/qv)1/传统布站(1/qv)2得
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
最后得[(d8/3/qv)1/(d8/3/qv)2]2=()2=,即Y/Z=。
(2)“枝上枝”阀组布站阀组至集气增压站采气管道长度与共有段采气管道长度之比Y/X的理论推导。
管道共有段根据《油气集输设计规范》的威莫斯(Weymouth)公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
将其两侧平方并变形得到如下公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
在本计算中取决于(d8/3/qv)2与(P12-P22)/T。将实际数据带入得
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
得Y/X=
解方程组:
图3“枝上枝”阀组布站与传统分散增压布站采气半径计算示意图
Y/X=,Y/Z=得(X+Y)/(X+Z)=
即“枝上枝”阀组布站采气管道长度是传统分散增压采气管道长度的倍。
(3)“枝上枝”阀组布站与传统的集中增压布站之间的比较。
图4“枝上枝”阀组布站与传统集中增压布站采气半径计算示意图
管道共有段根据《油气集输设计规范》的威莫斯(Weymouth)公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
将其两侧平方并变形得到如下公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
在本计算中取决于(d8/3/qv)2与(P12-P22)/T。将实际数据带入得
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
得Y/X=。
则得(Y+X)/X=,即“枝上枝”阀组布站采气管道长度是传统集中增压采气管道长度的倍。
“枝上枝”阀组布站工艺技术的创新点
(1)新技术极大地简化了流程。与传统的三级布站或二级布站相比,一步简化成一级布站;
(2)由节点技术取代了集气计量站,使得工艺得到实质性的简化,取消了所有建筑、容器设备、值班人员,阀组占地小于井口占地,投资得到大幅度降低,新技术与传统技术相比投资降低了55%;
(3)采气半径由规范规定的小于5km,延长到3倍以上,不仅进一步简化了采集气系统,投资得到进一步降低,而且产能规模成倍扩大;
(4)新技术使气田能耗仅为,远低于国内6949MJ/104m3能耗先进指标;
(5)新技术使气田占地面积由亩减少到亩,减幅达;
(6)操作人员由63人减少到21人,减幅达。
井口集输工艺
煤层气井采用排水降压采气工艺(图5),通过抽油机把地下煤层里的水从油管里抽出,直接排放到井场附近的晾水坑,进行晾晒,自然蒸发;煤层气随地下水的采出地层压力降低而不断的析出,当套管压力被节流到(G)时,通过采气管道,进入煤层气采集系统。
图5 井口采气原理示意图
集气阀组工艺
由于目前煤层气中含水量很少,故阀组不设分离器,既节约了占地又节省了投资。
井口来的煤层气到达集气阀组后压力为(G),进入集气阀组的生产汇管,经总计量后进入集气管道;在集气阀组设置单井轮换计量,可以根据需要轮换计量每口井的产气量。每口井的采气管道在集气阀组都有放空流程,当采气管道检修时,打开放空阀,进入放空汇管,经放空管排入大气;阀组的总流量以及温度、压力参数通过RTU利用无线传输系统传输至增压站。生产阀组汇管上设有安全阀,当采、集气管道压力达到(G)安全阀起跳,将超压部分气体排放至放空管(图6)。
图6 阀组工艺原理示意图
集中增压站工艺
在进站汇管上设有紧急关断和紧急放空阀,当出现事故时立即关闭紧急关断阀,同时打开紧急放空阀,进入火炬系统。在进、出站煤层气管道上设有温度、压力等参数以及压缩机的运行等参数进入仪表间的过程控制系统,进行检测、显示。在集气站的外输管道上设有流量计量装置,煤层气的外输气量进入仪表间的过程控制系统,进行检测、显示。在压缩机的进、出口分离器设有液位计及液体自动排污装置,进入仪表间的过程控制系统,进行检测、显示(图7)。
图7 集气增压站工艺流程示意图
2 煤层气田地面集输其他配套技术
互换式烟气节能转换技术研究[2]
对燃气发电机的废热利用是通过烟气采集、废热锅炉换热,再配以驱动泵,让水在换热系统中循环来吸收烟气热能这一途径来达到废热利用的目的。完成换热后的热水或者水蒸汽用来采暖或者做功,其实质就是提高燃气的利用率,以达到节约燃气的目的。
互换式烟气节能转换系统主要由两部分组成。第一,采热装置:热交换器。第二,动力设备:循环水驱动泵(如果集气站比较大,可增设能量转换装置,如蒸汽发电机及乏汽回收装置冷凝塔)。将上述设备利用管路连接,循环水在其间循环流动,构成废热利用系统。完成热交换后的烟气还可以送入吸收式空调(溴化锂空调),完成供暖或制冷。
发动机烟气和循环水同时通过热交换器,进行热交换,达到温度要求后的循环水在动力泵的作用下进入循环,提供采暖和生活用水,在水源缺乏的地区,废水回收处理后可进入系统进行循环利用。换热器内设有换热管,水在换热管内循环,发动机排放的烟气通过换热管间隙,在对流过程中完成换热,对烟气的热能进行利用。
煤层气增压设备的优选[2]
压缩机的种类有很多、分类的方法各异,按工作原理的不同可分为两大类:容积式压缩机和速度式压缩机。在容积式压缩机中,气体压力的提高是由于压缩过程中气体的体积密度增加所造成的;而速度型压缩机是先使气体在动力作用下达到很高的速度(动能),然后在扩散器中急剧降速,使气体的动能转化为压力能(势能),提高被压缩气体的动力。在煤层气矿场集输中,一般经常采用的是容积型的往复式压缩机或速度型的离心式压缩机。
压缩机的比较
从表1可以看出,往复式压缩机与离心式压缩机相比,其特点为:
(1)压力适用范围广:从低压到超高压都可适用,目前工业上使用到350MPa,实验室中使用的压力更高。
(2)效率高:由于活塞两侧高、低压流体间的密封性好,往复式压缩机的效率比离心式压缩机高得多。
(3)适应性强:往复式压缩机的排气量可在大范围内变动,气体的密度变化对压缩机工作的影响不如速度型的显著,对负荷变动和气质变化的适应能力都强。
目前煤层气矿场增压的处理量小,压比波动幅度大,因此多采用往复式压缩机。为了适应矿场的实际工作环境的条件,以天然气为燃料,由燃气发动机提供的一体化活塞式压缩机组在矿场增压中得到了广泛应用。
表1 压缩机优缺点对比表
压缩机原动机的比较
在煤层气田上使用的往复式压缩机,以燃气发动机和电动机为驱动力为宜。
最终采取何种驱动方式应作技术经济对比后才能确定。方案对比应包括设备自身投资、供电线路投资、管理方便等方面。如果外供电条件好,应优先选用电机驱动,电机驱动具有操作简单、管理方便的优点。燃气驱动更适用于无外供电条件或外供电条件差的情况(表2)。
表2 压缩机机驱动方式综合对比表
管道材质的选用[3]
由于煤层气井产出的煤层气节流后的压力为(最大)、温度≤20℃,因此,合理的选用采气管道的材料对降低工程造价,提高施工速度起着关键的作用,根据目前生产实际情况,采用PE管道和钢制管道在技术上均是可行的。我们在经济上对两种管道材料进行了对比,由PE管、钢管管道投资对比表及管径与管道总投资关联曲线看出,当采、集气管道的公称直径DN≤250,采用PE管道材料等级为PE100更为经济,当公称直径DN>300采用钢制管道更为经济。
水力学计算的优化选择
(1)根据大量研究数据发现,由于油气集输设计规范(GB503502005)中所用Weymouth公式的管内壁粗糙度较大(),且忽略了管线起伏变化过程中压降的加速成分,因此,计算结果较保守。同时,由于管道使用一段时间后,其粗糙度较新管道越来越大,计算结果也会较符合实际情况。
(2)对于计算软件,PIPELINESTUDIO是专业计算调峰和水击计算的,其优势是动态分析,尽管内部具有压降计算方法,但方法有限,且有使用限制。而PIPEPHASE是专业进算管道压降,段塞流和水合物的软件,内置公式较多,通用性较强,且具有经过大量工程验证的校正系数,故本研究最终确定选用PIPEPHASE作为煤层气田水力学计算软件。
(3)对于水力学计算方法,根据上述对比表明Mukherjee-Brill,Dukler-Eaton,Beggs,Brill & Moody,Beggs & Brill计算结果一样,均可作为煤层气田的水力学计算方法。但使用过程建议首选Beggs,Brill & Moody公式,因为其具有经大量工程验证和被行业普遍采用的管道起伏校正因子,可使结果更接近实际情况,其次在不知道选择何种计算方法时可以选择Mukherjee-Brill,因为该方法适合使用到山区地形变化起伏的管道上,该水力学计算方法是唯一适合所有流体构造的计算流体状态的模型。
3 煤层地面集输工艺技术的应用效果
应用情况
“枝上枝'阀组布站'”工艺技术已应用推广到我国两大煤层气产业基地建设中,如:沁南煤层气开发高技术产业化示范工程、山西沁水盆地南部煤层气直井开发示范工程、山西柿庄南项目2011年集输系统、柿庄南区块总体开发规划、鄂东气田韩城区块5亿产能建设工程、韩城市煤层气集输工程(二期)。推广速度较快,推广范围较大。其中“十一五”期间国家重大科技专项示范工程项目———沁南煤层气开发高技术产业化示范工程于2009年9月28日全部建成,一次投产成功,年创收入亿元,经济效益显著。通过实际生产运行,各项参数均表明:该工程所采用的“多点接入,柔性集输”地面集输工艺技术已达到国际水平,为国内今后煤层气田的大规模开发提供了良好的经验,同时也对大型天然气气田的开发建设有着十分重要的指导意义。
经济效益
沁南煤层气开发高技术产业化示范工程及韩城市煤层气集输工程(二期)分别于2009年和2010年建成投产。沁南煤层气开发高技术产业化示范工程年创收入亿元,应用新技术后,节省工程投资亿元,使建设工期提前了6个月,提前投产带来的销售收入达亿元。韩城市煤层气集输工程(二期)应用新技术后节省工程投资亿元,使建设工期提前了3个月,提前投产带来的销售收入达亿元。
4 结论
煤层气“枝上枝'阀组布站'”工艺技术地面技术工艺技术就在经济和社会效益中取得如此成效,其技术优势特别明显[4],为煤层气田实现规模化开发提供了技术保障,在具有明显的经济效益的同时,具有显著的社会效益。此外,煤层气田及页岩气田在我国属于刚刚起步阶段。煤层气田资源总量约为×1012m3,与陆上常规天然气资源量相当;页岩气田在我国分布广泛,总资源量可达100×1012m3,相当于天然气储量的3倍。“枝上枝'阀组布站'”工艺技术完全可以在上述各类气田开发建设中发挥作用,应用前景十分广阔。
参考文献
[1]裴红,刘文伟.2010.“枝上枝”集输工艺在大型低渗、低产天然气田及煤层气田建设中的应用,石油规划设计,21(2),12~15
[2]王荧光,裴红,刘文伟等.2010.煤层气田地面集输技术研究.辽宁:中油辽河工程有限公司(研究报告)
[3]裴红,刘文伟.2008.煤层气集输工程设计思想及在潘河项目中的实践.北京:2008年煤层气学术研讨会论文集
[4]王荧光.2009.苏里格气田苏10井区地面建设优化方案,天然气工业,29(4),89~92
86 浏览 3 回答
201 浏览 5 回答
236 浏览 3 回答
170 浏览 3 回答
282 浏览 3 回答
322 浏览 3 回答
255 浏览 3 回答
149 浏览 5 回答
133 浏览 3 回答
285 浏览 5 回答
246 浏览 3 回答
333 浏览 3 回答
172 浏览 4 回答
204 浏览 3 回答
182 浏览 5 回答