三年级数学小论文写法要点如下:1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;2、全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;3、准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;4、理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;5、精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。
朋友,您要的这个论文怎么也没什么范围啊??给你介绍两篇,真心希望能对你有所帮助!!解简答题方法寻径“简答题是考查学生阅读能力及语言概括能力不可缺少的重要方法,近几年来随着高考这类题型的比例增大,中学语文教学中也越发重视对这类题型的训练,下面就此谈谈解题的思路与技巧。1.深解文意,切忌孤立作答。由于简答题一般出现在高考的主观试题阅读部分,因此在完成这类题的时候,切忌孤。立静止地回答。要总览全篇,根据命题要求精读有关部分,认真钻研,再做答案。如高中第一册《荷塘月色》“月光如流水一般----如梵婀玲上奏着的名曲”一段,描写的是___;原文流露了作者和感情;就本段而言,则只有之情。为了准确作答,就必须在阅读全文的基础上,再精读此段,便可概括出本段描写的是“荷塘上的月色”;(荷塘月色)原文流露了作者“淡淡的哀愁以及难得偷来片刻逍遥的淡淡的喜悦”;就本段而言,则只表现了作者的“淡淡的喜悦”。2.充分利用试题的全部给定信息。上挂下联是阅读实际中最常用的方法,只靠推想和猜测有些题是难以确定答案的。要认真阅读,看清楚已知的是什么,未知的是什么,求解的是什么,隐藏有什么,暗示着什么,答题形式和要求是什么。如1991年现代文阅读第34题:作者为什么说“特殊的日子”?我们在答题时应首先注意到副标题“记1928年的一次俄国旅行”牐瑺我们可再借鉴文后小注:“列夫·托尔斯泰(1828----1910)”,这样我们把二者联系在一起,就会得出“1928-1828=100”。由此“这特殊的日子”便是托尔斯泰诞生一百周年。现代文的阅读测试点在原文里,跟上下文有着密切的关系,答案也往往就隐藏在字里行间,因此一定要充分利用给定信息。3.概括转述。辨析和筛选文中重要的信息和材料、对内容的归纳与概括能力。如1995年现代文阅读24——28题是阅读吕叔湘的《叶圣陶语文教育论集序)(节录),其中第25题是阅读第二自然段。附阅读内容的第二自然段:语言文字本来只是一种工具,日常生活中少不了它,学习以及交流各科知识也少不了它。这样一个简单的事实,为什么很多教语文的人和学语文的人会认识不清呢?是因为有传统的作法作梗。“学校里的一些科目,都是旧式教育所没有的,唯有国文一科,所做的工作包括阅读和写作两项,正是旧式教育的全部。一般人就以为国文教学只需继承从前的传统好了,无须乎另起炉灶。这种认识极不正确,旧式教育是守着古典主义的:读古人的书籍,意在把书中内容装进头脑里去,不问它对于现实生活适合不适合,有用处没有用处;学古人的文章,意在把那一套程式和腔调模仿到家,不问它对于抒发心情相配不相配,有效果没有效果。旧式教育又是守着利禄主义的:读书作文的目标在取得功名,起码要能得‘食禀’,飞黄腾达起来做官做府,当然更好;至于发展个人生活上必要的知能,使个人终身受用不尽,同时使社会间接蒙受有利的影响,这一套,旧式教育根本就不管。”本题要求考生“用自己的话分条简要概括”、“旧式教育的三种弊端”,并且每条不超过8个字。假如我们的考生不全用自己的话去加以概括,而是摘录原文的语句,那么就有可能答成“把内容装进头脑”,“意在模仿程式腔调”、“守着利禄主义”,答题就不全面,自然就不够准确。倘若只是走马观花。没能认真阅读原文,尽管是用自己的话概括,也有可能答得似是而非,含糊不清,从而失分。我们只有真正理解了作者的原意,整体把握文意,具有准确简炼的语言表达能力,才能转化为正确的答案。即:第一种弊端是“死记硬背古书内容”。第二种弊端是“生搬硬套作文程式”。第三种弊端是“追求功名利禄”。以上所述只是一些解题的一般思路和方法,在学生答题中还应结合试题的自身特点随机应变,这样便可以创造出更多更好的行之有效的解题方法。数学学习方法及其指导 音乐照片笑话手机铃声图片下载中心杨骞近几年来,旨在教会学生会学习、提高学生自学能力的学法指导的研究和实践已是基础教育改革的一个热门课题。这一课题的提出和研究,不仅对当前提高基础教育质量、实施素质教育具有现实意义,而且对培养未来社会发展所需要的人才、促进科教兴国具有历史意义。随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。一对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”〔1〕等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学习总结、课外学习等各个学习环节之中)〔2〕;建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)〔3〕等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。二从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”〔4〕。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。三从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”〔5〕。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。四根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。4.根据数学方法指导的目的和内容适度调整例题。通常,人们根据问题的条件(A)、解决的过程(B)及问题的结论(C)的情况把数学题划分为标准题和非标准题两大类:如果条件和结论都明确,学生也熟知解题过程(即A、B、C三要素全已知),这种题为标准题(记为ABC);A、B、C三要素中缺少一个或两个要素的题则为非标准题。如果分别用X、Y、Z表示对应于A、B、C的未知成分,则非标准题的题型(计6种)可表示为:ABZ,AYC,XBC,AYZ,XBZ,XYC。数学教材中的例题大多数是ABC型和ABZ型,有部分的AYC型和极少数的AYZ型。由于数学学法指导的一项重要任务是教学生会抽象、概括、归纳、演绎,会数学地思考和交流,会分析问题和解决问题,因而例题教学要特别注重教材中缺少的几种类型题的教学。其中最为重要的是“开放性题”(ABZ型和AYZ型例题中,Z不唯一)和“数学问题解决”中所指出的“数学应用题”(AYC型及AYZ型中所涉及的主题是数学以外的内容)。对于“开放性题”,由于它的结论不唯一,对培养学生数学思维有着至关重要的作用。对于“数学应用题”,则由于它的解决要用数学模型法,因而对培养学生运用分析问题和解决问题的方法是十分重要的。从数学学法指导的角度来说,适度调整例题很有必要。调整的策略有二:一是改,即将已有的题型变换为别的题型;二是增,即增加与知识点有关的“开放性题”和“数学应用题”。5.注重对例题的全方位反思。例题的作用是多方面的,除上文提到的几点外,例题教学还具有传授新知识,积累数学经验,完善数学认知结构
数学论文是从事数学研究的数学工作者,为发表自己的数学科研成果而写出的一种论文,它是科学论文的一种。
数学论文与其他科学论文最根本的共同点之一,就是科学内容和科学语言文字形式的统一。它的特殊性体现在结构的格式化、逻辑的严格性、语言的简洁性和符号的广泛性。
1结构的格式化
数学论文的结构形式,与一般的科学论文常用格式没有多少区别,只是在某些具体环节上具有不尽相同的布局,这是根据所取得的科研成果的内容来安排的。在数学前言部分一般应包括提出课题的背景、动机,这是属于那一方面的课题,对已有成果的评价,课题在所属领域中所占的地位、课题的范围和所达到的目标等。
正文部分是数学论文的核心,在写作布局上,由于研究工作所涉及的数学学科、选题、研究方法,结果的表达方式就有一定的差别,因此,就不能作统一的规定。对于纯数学理论方面,该部分内容应包括定理和定理的证明,’用来证明定理的引理和由定理得出的推论,为了证明或验证某一间题所举的例子。对于应用数学方面的问题,该部分内容一般应包括实际问题的描述、数学模型的建立、解决问题的方法及其理论根据和具体实例。
2逻辑的严格性
作为宣布成果的数学论文,应按照逻辑的严格性的要求去写,不然就不成其为数学论文。一篇数学论文要无懈可击,要经得起推敲。在叙述定理的证明时,要追究每一步是否有根据,它的根据是什么,是定义,还是公理和定理,决不能含糊,更不能想当然。当你使用“显然”二字时,要仔细考虑一下,是否真“显然”。用直观自然语言推导的环节,要特别注意,是否还存在没有考虑的情况,是否可换成严格的推理。在这里一定要细心推敲,一些不可弥补的错误往往出现在这里。
按照演绎的逻辑系统写数学论文,这是宣布成果的一个传统写法。这种形式写出的数学论文一环扣一环,结构紧凑,使整篇论文形成一:个严密的逻辑结构,能以较小的篇幅容纳较多的信息量。但这种传统的写法,把数学家的思维过程隐蔽起来。我们写论文宣布成果,这当然很重要,但仅作到这点还不够,还应该给人更多的启迪思维的作用。应该告诉读者,该定理是怎样提出来的,又是怎样想到这个证明的,这就是要把数学家的思维过程写进去。’当然这会增加论文的篇幅。不过我们没有必要每篇论文都写思维过程,只要选择那些典型的具有启发意义的数学成果写出其思维过程。阅读这样的论文,使人能够得到数学发现发明的启示,从而更好地培养人们的数学创造能力。欧拉著作之所以能成为启迪人们智慧的源泉,就在于他把自己的一些不严格的猜想过程也写到著作中去了,这样使读者很容易窥察到欧拉是怎样进行思维的。因此我们写论文要求定理的证明过程一定是严格的,对于定理的提出和证明的某些思路就没有必要一定要求它是按严格逻辑推理得出来的',实际上,这也是不可能的。因此严格和不严格是相对的。
3语言的简洁性名
数学论文要求语言简洁,以恰到好处的语言,准确地表达数学概念、逻辑推理,使之字里行间,增一字则太多,减一字则术少。能以最少的语言表达出最精湛的数学结果,反映出最丰富的数学内容。
在数学推论的过程中,并不是每步都要写出理论根据。数学论文不是教科书,它的对象是给专业工作者看的。因此,推证过程以同行专家能看懂为原则,所以证明步骤不需要写那么详细、允许有较大的跳跃性。特别是那些常见的推理步骤,明显的推理过程,显然的理论根据,可以一笔而过,不需要费笔墨.论文要求以最少的篇幅,容纳最多的信息。对于常用的数学概念和定理在论文中出现不需要作解释,对于数学申新出现的概念租定理要注明出处,以便读者查对,如果出处的论文不宜查对,为了方便读者,可以给出其释义。有些新出现的概念和定理虽然名称一样,但其含义在不同的论文里不尽相同,这样注明出处,使读者不会产生歧义.
数学术语就是在数学科学领域里使用的专门词语,髓着数学科学的发展,人们对数学的认识日益深化,反映数学本质和表达数学内容的新概念不断地涌现出来,用专口的诃语把这些新概念固定下来,就形成了数学术语。这些新概念是否需要以定义的形式给出来,以及用什
么样的词语把它固定下来,这是需要认真考虑的。以定义给出的溉念需要考虑它的作用的重要性以及应用的广泛性。给新概念以合适的词语名称,这需要考虑概念的含义和已有的一些概念的名称之间的关系。在数学发展的历史长河中,每个数学术语二经舜生,就以其精确的固定的含义长久地为人们所使用。有些名称,尽管与其含义不相符,也没有必要去改动。例如,无理数与虚数.
在公理、定义、定理中恰当使用一些文言词语,可以使数学论文更加精炼、简洁、准确。例如在定理中运用“当且仅当”4个字,就把定理中条件和结论的关系表达得一清二楚。在给数学概念下定义和叙述定理时,句型结构严谨规范,比较固定单一。我们在写作时,要很好效法这些已有的规范句型,把常见固定的格式用在自己的写作中,论文就显得干净利落,简洁有力,准确可靠,给人赏心悦目之感。
4符号的广泛性.
一‘在数学论文中广泛地使用数学符号和由符号组成的公式,形成了一套数学语言符号系统,它与自然语言一样承担着贮存和传递数学信息的职能。利用数学符号和公式可简明扼要地反映出准确而深刻的数学知识,能够较集中地表达数学内容,使人看了一目了然,便于记忆,容易演算和进行推理,也便于国际交流·刘如n个数相加简单符号代替,这样可以压缩论文篇幅,行文也显得明了清秀,例如记等式右边的式子在论文中多次出现,这样把它简记成等式右边的符号IR皿就简洁多了。符号用;来表示所要阐述的数学概念和定理,恰当连贯地使用数学符号,可以使一篇论文明自易读,使人得到一种美的享受。每篇论文都要用到大量符号,因此着手写数学论文时,首先要考虑一下符号系统,哪些符号应该用英文大写,哪些用小写,哪些用黑体,哪些用法文花体,又哪些该用希腊字母等等,都要有周全的考虑。这样才能使整个文章协调一致,整齐美观。
使用符号要注意协调性,例如三元线性函数一般表示为ax+b夕+。z或a:二:十a:二:+。:劣:,如果表示为“‘劣:+by:+。x:就显得不协调了。又如果给定的两个集合表示为A,b,那就不好,习惯地表示为A,B。方程就不如把z换成y好,即如下表示
因为是考虑两个变元,通常用二,y表示,这是一种习惯表示法。·数学中一些习惯法在写论文时,最好应予保留。自然语言和数学符号语言联合使用时,要按汉语语言规范,有时虽然有些变态,但并不影响意义的表达,例如二必须大于零,可以表达为必须劣>0。
虽然不合汉语的语序,但这种变态是允许的,这种变态是一种合理的变态。自然语言与数学符号重复也是允许的,例如自然数。,这种重复使得表达清晰、连贯,而不是一种赘余。
一、培养数学学习兴趣在小学数学教学中的重要性
数学是其他自然科学的基础和保证,因此,学好数学对于学生以后其他学科的学习具有非常重要的现实意义.小学数学主要是促进学生在幼年时期接受数学教育,进而为将来的数学学习奠定基石,因此,培养小学生对于数学的学习兴趣显得非常重要.处于7~12岁年龄段的小学生是各项认知技能都在快速发展的阶段和人群.在这一年龄阶段,其学习数学知识的能力会随着其兴趣而得到不同的发展.如果学生因为缺乏学习兴趣,产生厌学心理,就会对其今后的发展造成不可修复的伤害.教育和教学就是培养人和塑造人的一门科学,所以说,好的教育教学是会使得人的全面发展得到增强的.
二、在小学数学教学中培养学生学习兴趣的方法
1.必须要实行的原则
在小学数学教学中培养学生的数学兴趣是一个重要的教学问题,它必须与学生的知识结构一致和协调,符合学生的身心发展和全面发展,那么,我们就必须必须遵循和执行一定的原则:
(1)适应性原则
适应性原则要求在小学数学教育的日常活动中,学习兴趣是关键,那么,我们就需要以此为原则来不用该年龄阶段的知识去引导学生的努力方向.比如说,现在小学阶段,那些小学奥数比赛已经非常流行了.这些所谓的奥数竞赛,不符合小学生的学习阶段和知识结构,很多题目大大超出他们的知识范围.但这在校园里却是一种很普遍的风尚,这种错误的风尚打击了一大部分学生,使他们发出“数学难”的呼声.这样的学习榜样当然值得肯定,但不适宜在推广而后实施,也不利于培养学生学习数学的积极性和兴趣.
(2)发展性原则
发展性原则是为了培养学生学习数学的兴趣来结合社会的生活和学生的身心特点双重因素.那么,启发学生思考的问题要符合学生知识结构,既不能太简单也不能太难,主要是要联系理论知识与现实生活,促进学生的全面发展.此外,让学生在学习过程中既感到有挑战性,又感觉到好玩和有成效.这样,学生在数学课堂上的学习中不但能学到一定的知识,又有了继续学习的欲望和兴趣,为以后的学习和生活打下了良好的基础,是实现促进学生全面发展的教育目的的.
2.所采取的方法
以根本原则为基础,以具体措施为方法来有针对性地达到教学目标.例如:我们在小学数学的教学过程中可以采取趣味性的教学方式,激发学生的学习兴趣.从小学数学的教学学习环境来说分成两个部分,一是课堂教学,二是课外思考和课外作业.在课堂教学中,应该:
(1)每名学生都积极参与
老师在授课的过程中,要以所教知识与学生的现有认知水平为基础,设计师生共同参与的学习模式,让所有学生参与其中,提高其学习的主动性和效率.
(2)不同的成功体验
让每一名学生都有自己对成功的体验,老师通过教学情境的创设来区别对待,并根据学生不同学习程度和学习能力因材施教,这样所有程度的学生都能获得成功的喜悦.数学这一学科具有系统性和连续性,所以说,循序渐进、激励优生和表扬后进生都是可行之策,每一名学生都会体验到自己的成就感来获得喜悦之情,更能激发学生学习的积极性和主动性.
(3)积极表扬和鼓励
小学生具有年龄小和争强好胜的特点以及荣誉感,所以,在教学的活动中,教师要发现学生的闪光点和优点来加以表扬.特别是,在学生取得进步时,教师要及时给予表扬和鼓励,这样就会使得学生们不断保持学习兴趣.
(4)趣味性课堂活动
教师可以组织一些趣味活动.首先是重视直观的教学方法,例如在教授小学一年级“加减法”的时候,可以让同学们自制一些小工具,这样课堂上玩耍的过程中就学会了知识,同时也使学生学习变得直观化和简单化.其次,我们教师在日常的教学中,尽量将一些大家都熟悉的生活场景引入到课堂来,通过生动有趣的故事,在中间穿插一些数学知识,并通过模型、实物等教具,配合多媒体等教育设施,形象而又直观地引导学生去掌握新知识.在课堂外,应该:给学生创造自由的发展空间.因为小学数学学科本身以理解为主,只要在课堂上真正理解消化了,我们可以适当地减少家庭作业.毕竟在如此小的年纪搞题海战术实在不是一件痛快的事.为了保持学生在课堂中的热情和兴趣,尽量不要给学生的课外生活布下阴影.课外作业以质量取胜.适量的人性的家庭作业能够使学生对数学这一重要学科保持持久的正面的重视.所以我们在给小学生布置数学课外作业时,必须对题量和题型做细致的考察.归根到底,作业的意义就是为了发现问题并解决问题,而不是作为惩罚学生的硬性指标.
190 浏览 5 回答
171 浏览 2 回答
112 浏览 3 回答
218 浏览 3 回答
342 浏览 4 回答
346 浏览 5 回答
115 浏览 4 回答
117 浏览 5 回答
326 浏览 4 回答
160 浏览 3 回答
270 浏览 2 回答
260 浏览 6 回答
343 浏览 3 回答
121 浏览 5 回答
295 浏览 2 回答