关于浅谈组合优化问题求解中的机器学习方法如下:
机器学习方法求解组合优化问题领域在 2015 年以来,取得很大的进展,机器学习 ML+组合优化 CO(简称 ML+CO)发展主要有两条主线,一条是监督学习路线,另外一条是强化学习路线。我们的目标是设计求解组合优化问题的机器学习算法框架,适用多个组合优化问题。
组合优化问题(Combinatorial Optimization Problem,COP)是一类在离散状态下求极值的最优化问题,组合优化问题有非常多的实际应用:通讯网络、芯片设计、飞行路线调度、数据中心管理等。
其中 TSP 问题是大家比较熟知的一个组合优化问题,如有一个售货员,从北京出发,经过下图当中所有的城市而且只能通过一次,最后回到北京,要选择一个合适的城市序列,使得走的路程之和或总花费最少。
组合优化问题数学模型组合优化问题其实属于离散优化的问题,我们可以写成如下的数学模型:例如 TSP 问题,给定一个完全图 G,顶点集 V(G)={0,1....n-1}, 边权重ω:E(G)-> Q,我们要从 0、1 到 n-1 所有置换当中挑出一个置换,使得这个置换相邻两个顶点之间的权重之和是最小的。我们可以抽象成如下数学模型:
组合优化问题分类根据计算复杂性理论,有 P 问题、NP 问题、NP-complete(NPC)问题,NP-hard问题四类,它们的定义分别为:P 问题:可以用确定性算法在多项式时间内解决的问题
NP 问题:可以在多项式时间内验证是否正确的问题NPC 问题:它是一个 NP 问题,同时所有的 NP 问题都能在多项式时间内约化到它。(注意,如果这种问题存在多项式时间的算法,那么所有 NP 问题都是多项式时间可解的,即 P=NP)NP-hard 问题:所有 NP 都能在多项式内约化到它,但它不一定是一个 NP 问题。