初二数学考试成绩的好坏,试题质量的优劣、教学质量的高低、教学过程中存在的问题等依靠试卷分析解决。下面是我收集整理初二数学的试卷分析以供大家学习。
试卷中反应出的问题也正是数学教学中存在的问题,学生的考试成绩不是很理想。在本次考试中学生第9、16、20、22、24、26这几题答的很不好,尤其是第16、18,24、题答的更差,从这些试题中可以看出学生对几何试题掌握的很不好。例如第16题对的学生不是很多,学生没有掌握过那点作那线的垂线,因此学生不能作出所求角,这是解决问题的关键。第18题学生审题不认真题,试题要求先理解图像然后在根据图象回答问题,不少的学生没有理解图象,同时还有一部分的学生不能够准确的画出图象,这也导致了学生丢分的现象。同时第24题没有理解y的实际意义。这也说明学生分析问题不够全面,缺乏思维的发散能力,学生考试成绩不理想,既有客观原因,也有全观原因。其客观原因主要有以下几点:
1、本学期的教学内容很多,而且有一些内容是学生不是很理解就如一次函数,期末复习的时间很少,这也是影响成绩的一个很重要的原因,一部分学生数学基础不是很好,再加上一部分学生的学习习惯较差,而且有一部分学生的 学习态度 不端正,导致了一部分学生的学习成绩不理想。
2、数学知识的严密逻辑性对基础知识较差的学生在初中数学学习中举步艰难,再加上学生不良的学习习惯,使他们积重难返。
3、这几年的中考题都注重了实际应用,注重了对学生创新能力的考察,注重了对学生的基础知识的考察,注重了对学生掌握数学思想的考察。这种情况也符合了素质 教育 发展的要求,而我们学校的学生恰恰这些方面的能力较差。
4、我们数学教师努力钻研新教材,研究新的 教学 方法 ,克服了种种困难,使数学成绩逐步好转。但是鉴于数学成绩在中考中的重要性,我们大部分数学教师把更多的精力投放到一部分“有望”的学生身上,在教学方法上采用了与培养学生能力相背的方法,这也是导致这次考试成绩不是很理想的一个原因,在今后的数学中要面对全体学生,以学生为主体一教师为主导的教学思想
今后教学的 措施
1、首先我们教师应彻底改变自己的角色,真正做到以学生为中心,面向全体,对数学学习有困难的学生多加关注,增进师生之间的情感交流,采取学生间互助等多种有效的形式对他们多加关注。
2、加强我们教师自身数学素养的提高,在平日的教学中能够引导学生自觉的用所学知识解决实际问题。同时要提高教师自身解决实际问题的能力。
3、加强“双基”训练,努力提高学生的计算能力,几何推导能力以及分析问题和解决问题的能力。强化对概念的理解和应用,适当创设问题情境,使学生从根本上理解所学知识。
4、在新的教材改革的过程中,生活实际问题越来越多。因此教师在教学过程中,既不能脱离教材也不能仅仅依靠教材,而应把教材做为我们教学的一个平台。
5、加强变式教学,纠正死啃书本的个别现象,从教师环节上强调砧研教材,吃透教材,用活教材,不拘一格地完成教学活动,增强学生学习的灵活性。
6、调动学生的积极性,增进师生间的情感交流,鼓励学生的 创新思维 ,接受学生在前进中的错误并将其引导到正确的方向上。
7、注重教学效果,培养学生的各种能力。及时做好反馈,对教学中的问题。
一、基本情况
全卷共26道题,覆盖了《数学课程标准》中一级知识点,二级知识点的覆盖率也较高,试题呈现方式多样化,主观性试题的类型丰富:开放题、探究题、应用题、操作题、信息分析题等占一定的分值比例,题型结构搭配比例基本适当,各知识点分值比例分配比较合理恰当,总体难度和难度结构分布合理,符合学生的实际情况。
二、考生答题情况分析
填空题(1—11) 和选择题(12—20)均为基础题,主要考查学生对 八年级 数学中的基本概念、基本技能和基本方法的理解和运用。
从统计考生答卷情况来看,对于大部分小题考生的得分率普遍较高。某些试题涉及知识虽然基础,但背景新颖,需要考生具备一定的“学习”能力。考试结果表明,对于这样的试题,有相当一部分学生存在能力上的欠缺。例如:第19,20题。第7题学生往往讨论不全面只解答一种情况漏第二种情况导致失1分,所以填空题能得满分的考生不多。
第21题是基本根式运算题,虽然涉及到化简根式,但情形简单仍不失基础性。第22题以正方形网格为背景,设置了基本作图,在对图形的操作、思考等活动中考查学生对图形与变换,平行、垂直的理解,体现了《课程标准》所倡导的“动手实践,自主探索”的学习理念。第23题各问题的难度层次分明,逐级递进,可以引导学生逐步深入思考。第24、26题由于配置了应用背景,需要考生具备一定的理解能力,学生在解决这一系列问题的过程中,可以表现出自己在从事观察、数学表达、猜想、证明等数学活动方面的能力,因而本题也较好地考查了过程性目标。第25题考查的内容是根据具体问题中的数量关系,建立适当的数学模型解决实际问题,体现了分类、数形结合等重要的数学思想方法,内涵比较丰富,对分析问题和解决问题的能力要求较高。可以说,开放与探究是本试卷的亮点。
三、试卷对课程理念的体现,对科学特点的体现
数学试卷呈现出许多新意,重视试题的教育价值的功能,体现新课程改革理念,既体现了数学学科的基本特点,又给学生创造了灵活、综合地运用基础知识、基本技能,探索思考的空间与机会。
(1)立足于学生的发展,关注对数学核心内容的考查
以《数学课程标准》为依据,试卷内容既关注了对数学核心内容、基本能力和基本思想方法的考查,也关注对数学思考、解决问题等课程目标达成状况的考查。着眼于考查学生在计算、空间观念等方面的领悟程度,考查学生的 基本素养 与能力,整卷的题量适度。
(2)关注对应用数学解决问题能力的考查,重视试题的教育意义
试题着重考查学生是否具有数学的眼光看待现实世界的数学应用能力,是否具有将实际问题转化为数学模型的数学建模能力,是否能够将自己解决问题的过程用严谨、规范、完整的数学语言表达出来。
(3)注重试题的开放性和探究性,突出数学思维过程的考查
在本试卷中,第7、25题为开放性问题,第23、24、26为探究性问题。其中,第23题从形式到内容都较为简单,涉及的数学知识为正方形、全等、垂直等,但不同的考生会做出不同的解答,从考生的答卷中看,绝大多数考生都能顺利完成。
一、试卷成绩总体分析
这份试卷,围绕学段教材的重点,并侧重本学期所学知识,紧密联系生活实际,测查学生对基础知识、基本技能的理解与掌握,以及对于联系生活实际的实践活动能力等等。本次试卷命题较好地体现新课程理念,内容覆盖面广,题型全面、多样、灵活,难度也较大。
成绩反映:平均分一般,及格率较高说明,学生基础知识掌握的可以,但高分率低,说明学生解决复杂问题的数学能力较弱。
二、存在问题分析
1、基础知识掌握好,个别同学较差
大部分学生的基础知识掌握的比较扎实,对基本知识掌握得较牢固。个别较差的学生个别辅导。
2、解决问题能力不强
在本张试题中有多个题目是解决实际问题的题目,这部分试题基本上都是按由易到难的顺序排列的。学生的得分率较低,反映出学生不能很好的将所学知识应用于实际,能够解决一些实际问题。
3、解答方法多样化,但有解题不规范的现象
试题中有一定数量的灵活、开放的题目。可以说学生的解答方法多样,表现出了思维的灵活性和方法的多样性。试卷中有许多同学明明知道道理,却未得满分,在解题规范性上海存在问题。
4. 有些学生良好的学习习惯有待养成
据卷面失分情况结合学生平时学情分析,许多数学生失分可归因于良好的学习习惯还没很好养成,从卷面的答题情况看,学生的审题不够认真,抄错数字,看错题目要求,忘记做题,计算粗心马虎等,是导致失分的一个重要原因。
通过以上的分析,我们可以看出:教师们已经把新课程的理念落实到教学实际之中。他们在夯实知识与技能的同时,还应该关注学生 “数学思考、解决问题、情感态度以及个性发展”等全方位的综合素质,促进学生创新思维能力、解决问题能力及学习习惯等综合素质的拓展和提升。
三、今后教学工作改进策略措施:
根据学生的答题情况, 反思 我们的教学,我们觉得今后应从以下几方面加强:
1、加强学习,更新教学观念。
发挥教师群体力量进行备课,弥补教师个体钻研教材能力的不足,共同分析、研究和探讨教材,准确把握教材。根据学生的年龄和思维特点,充分利用学生的生活 经验 ,设计生动有趣、直观形象的数学教学活动,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识数学知识。重视知识的获得过程,让学生通过操作、实践、探索等活动充分地感知,使他们在经历和体验知识的产生和形成过程中,获取知识、形成能力。坚持认真写好教学反思。经常对自己教学中的得与失进行自我反思,分析失败的原因,寻求改进的措施和对策, 总结 成功的经验,撰写教学案例和经验论文,以求更快地提高自身课堂教学的素质和水平。学校内部积极开展教研活动,互 相学 习,共同发展,提高自身素质,构建适应现代化发展需要的数学模式。《国家数学课程标准》的基本理念中提出:“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平…”,明确地把“形成解决问题的一些基本策略”作为一个重要的课程目标,因此教师应把评价的重心由关注学生解题结果转移到关注学生的解题策略上来。在肯定学生个性方法、带给学生成功感受的同时,认真分析学生不同的解题策略,并通过观察、调查、访谈等多种方式,了解学生的所思所想,掌握学生数学学习的水平,看到自己教学中存在的问题,对自己的教学过程进行回顾与反思,从而促进课堂教学的改革。
2、夯实基础,促进全面发展。
从点滴入手,全面调查、了解学生的知识基础,建立学生的“知识档案”,采用分层教学,力求有针对性地根据学生的知识缺陷,进行补缺补漏,使每个学生在原有基础上有不同程度的提高。加强各知识点之间的联系和对比,通过单元的整理练习帮助学生建立知识的网络结构,以提高学生的思维灵活性,培养学生举一反三,灵活解题的能力;通过各种实践活动和游戏,培养数学的应用意识,让不同的学生在数学上都能够得到不同的发展。