第1章 矩阵与线性方程组 矩阵的基本运算 向量空间、内积空间与线性映射 随机向量 内积与范数 基与Gram-Shmidt 正交化 矩阵的标量函数 逆矩阵 广义逆矩阵 Moore-Penrose逆矩阵 Hadamard积与Kronecker本章小结习题第2章 特殊矩阵 对称矩阵、Hermitian 矩阵与循环矩阵 基本矩阵 置换矩阵、互换矩阵与选择矩阵 正交矩阵与酉矩阵 带型矩阵与三角矩阵 中心化矩阵与对角加矩阵 相似矩阵与相合矩阵 Vandermonde 矩阵与Fourier 矩阵 Hankel 矩阵 Hadamard矩阵本章小结习题第3章 Toeplitz矩阵 半正定性 Toeplitz线性方程组的Levinson递推求解 求解Toeplitz线性方程的快速算法 Toeplitz矩阵的快速余弦变换本章小结第4章 矩阵的变换与分解 Householder变锦 Givens 旋转 矩阵的标准型 矩阵分解的分类 对角化分解 Cholesky分解与LU分解 QR分解及其应用 三角对角化分解 三对角化分解 矩阵束的分解本章小结习题第5章 梯度分析与最优化第6章 奇异值分析第7章 总体最小二乘方法第8章 特征分析第9章 子空间分析与跟踪第10章 投影分析参考文献索引