数学学习兴趣及其培养内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教学环节,贯穿于数学教学的全过程。关键词:学习兴趣 兴趣 认知学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。1.学习兴趣及特点1.1 学习兴趣兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着,兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习,使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。1.2 兴趣的特点1.2.1 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴趣。学习的兴趣是可以诱发和培养的。1.2.2 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是建立在需要的基础之上的。1.2.3 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。1.2.4 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支持、推动和促进作用。(2)为未来活动做准备。1.2.5 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。1.2.6 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美感引起的自觉兴趣和潜在兴趣则是持久兴趣。2 影响兴趣形成与发展的因素2.1 兴趣与需要的关系皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的,兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需要的人则更喜欢简单的任务。2.2 兴趣与年龄的关系不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。2.3 兴趣与性格和能力的关系不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。2.4 兴趣与他人、集体及地区的影响有关学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。2.5 兴趣与性别的关系从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚至讨厌数学的也是男生多于女生。3 兴趣的形成过程儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的注意和兴趣。要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域连接起来。章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。4 兴趣的作用兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌”于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来时,就表现为一种稳定的兴趣的个性倾向性。5 兴趣的发展规律5.1 兴趣发展逐步深化人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平,它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目性和广泛性。乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、自发性和坚持性的特点。志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。5.2 直接兴趣与间接兴趣的相互转化兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。5.3 中心兴趣与广泛兴趣的相互促进中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。5.4 好奇心、求知欲、兴趣密切联系,逐步发展从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三者又是沿着好奇心—求知欲—兴趣的方向发展的。好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某事物或活动的兴趣。5.5 兴趣与努力不可分割兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣,也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。6 激发和培养学生学习数学的兴趣数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城一中的高三毕业班学生的调查显示45.4%的学生认为课业负担较重的科目是数学,32.8%的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣,是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节,贯穿于数学教学的全过程。6.1 要求学生建立积极的心理准备状态教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。6.2 帮助学生形成正确的学习价值观学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。6.3 提高教学水平引发学生学习兴趣6.3.1 设悬激趣创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也得到解决。6.3.2 实践激趣数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值,同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的兴趣。6.3.3 竞争激趣课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足够的机会,鼓励他们竞争。6.3.4 操作激趣感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容,使学生的认识由感性的基础上升到理性知识。6.3.5 评价激趣教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导,忌用简单、粗糙的语言挫伤学生的学习知识性:第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说:“圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。”从而激发学生的学习兴趣。第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导,让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功,产生兴趣。6.3.6 加强直观,引导动手操作在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手操作能有效地引发学生的学习兴趣。6.4 建立平等和谐的师生关系教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心,参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关系,学生才会亲其师、信其道、学其知,产生兴趣。6.5 应用现代化教学手段培养学习兴趣学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰好弥补了这一不足。随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。参考文献:[1]陈在瑞、路碧澄注。数学教育心理学。北京:中国人民大学出版社,1995。[2]李洪玉,何一粟著。学习动力。武汉:湖北教育出版社,1999。[3]李洪玉,何一粟著。学习能力发展心理学。合肥:安徽教育出版社,2004。[4]刘显国。激发学习兴趣艺术。北京:中国林业出版社,2004。[5]田中。初中学生性别与数学学习关系的问卷调查分析。数学通报,2000(6)。[6]徐德雄。高中数学学业负担的调查及对策。中学数学教学参考,1997(3)。另一篇:谈影响高中数学成绩的原因及解决方法 有人这样形容数学:“思维的体操,智慧的火花”。在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分,已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力。然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。笔者在2002年暑假期间参加新疆高中数学骨干教师培训时,有几位给我们授课的文科专家学者,就谈到自己在上高中时虽然很想学好数学,可就是数学成绩提不高,最怕见高中数学老师。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下: 面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面。 1.被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。没有真正理解所学内容。 2.学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。 3.不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 4.进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。 高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策: 1.加强学法指导,培养良好学习习惯。 良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。 上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。 及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。 独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。 解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。 系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。 课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。 2.循序渐进,防止急躁 由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。 3.研究学科特点,寻找最佳学习方法 数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。 4.加强辅导,化解分化点 如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点。对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
我也找不到....~~~~(>_<)~~~~ 死了啊—_—|||........~~~!!!
220 浏览 3 回答
184 浏览 2 回答
320 浏览 3 回答
308 浏览 2 回答
223 浏览 2 回答
243 浏览 2 回答
255 浏览 2 回答
152 浏览 5 回答
293 浏览 2 回答
114 浏览 6 回答
193 浏览 5 回答
210 浏览 2 回答
160 浏览 3 回答
165 浏览 2 回答
270 浏览 3 回答