1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导;
2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x
的导数,也就是说,一定是链式求导;
3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法,
这三个法则可解决所有的求导;
4、然后解出dy/dx;
5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。
扩展资料:
隐函数求导法则:
隐函数导数的求解一般可以采用以下方法:
1、先把隐函数转化成显函数,再利用显函数求导的方法求导;
2、隐函数左右两边对x求导(但要注意把y看作x的函数);
3、利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
4、把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。
参考资料来源:百度百科-隐函数