可以说明,看标准回归系数,直接用SPSS回归分析,就可以得出各个自变量与因变量的相关系数。
多元回归分析中,首先要看X对Y有没有呈现出显著性影响,如果说自变量X已经对因变量Y产生显著影响(P< 0.05),还想对比影响大小,可使用标准化系数( Beta)值的大小对比影响大小,Beta值大于0时正向影响,该值越大说明影响越大。Beta值小于0时负向影响,该值越小说明影响越大。
如果它不是线性的,你可以通过一些变换使它线性化,然后你可以用多元线性回归建模。变量之间的某些相关性是正常的,只要不存在多重共线性。
如果我们只需要探究自变量和因变量之间的关系,而不需要根据自变量的值来预测因变量的区间,则可以放宽方差的正态性和同质性。回归并不一定意味着因果关系。
两连续变量线性回归模型的适用条件:
(1)线性趋势:自变量与因变量之间为线性关系,可通过散点图判断;
(2)独立性:因变量Y的值是相互独立的,它们之间没有联系。即残差必须相互独立且不存在自相关;否则,应采用自回归模型;
(3)正态性:因变量Y服从正态分布,即残差要求服从正态分布。