在具体的教学过程中,将数学史融入数学教学有很多种做法,这取决于教师的信念、教学观、课程内容、历史资料等诸多因素,已有的文献也提供了很多的经验,包括使用专机、游戏、历史调查、本地历史考察、历史家庭作业、历史命题、参观、观看影视作品甚至是戏剧表演。John fauvel 于1991年在《数学学习》上编辑了一期教学中如何应用数学史的专刊,其中列举了应用数学史的12 种不同的具体做法。萧文强(1992)对各种做法进行了概括,提出了应用数学史的8种具体方法和途径:·在教学中穿插数学家的故事和言行;·在讲授某个数学概念时,先介绍它的历史发展;·应用数学历史命题讲授数学概念,根据数学史上典型的错误帮助学生克服学习上的困难;·知道学生制作富有数学史趣味的壁报、专题探讨、戏剧、录像等;·应用数学史文献设计课堂教学;·在课堂内容里渗透历史发展的观点;·以数学教学做只因涉及整体课程;·讲授数学史的课。以上对数学史融入数学教学的研究和总结都成为今天我们实际课堂教学中应汲取的宝贵经验;但怎样将这些理论灵活的运用到实际中去呢?下面就从具体的课堂教学案例入手,谈一谈数学史融入数学教学的方法和作用。2 将数学史融入数学教学的具体应用2.1 通过情境创设融入数学史教学是需要情境的, 但是什么样的情境进入课堂,不仅取决于教学内容, 也取决于教师的教育观念, 相同的教学内容也可以创设出不同的问题情境。建构主义的学习理论强调情境创设要尽可能的真实,数学史实是真实的。因此,情境创设可以充分考虑数学知识产生的背景和发展的历史, 用数学史实作为素材创设问题情境, 这不仅有助于数学知识的学习, 也是对学生的一种文化熏陶。教材的内容。 这样的情境取材于数学史料, 又准确地反映了数学的本质, 必将增强学生的学习兴趣。案例1 无理数可以在讲授无理数的概念时, 先介绍它的历史发展。古希腊时代毕达哥拉斯学派的成员希伯索斯在用勾股定理计算边长为1 的正方形的对角线时, 发现对角线的长度是一种从来没见过的“新数”,打破了该学派所信奉的“万物皆整数”的信条, 引起了人们极大的恐慌, 这件事在数学史上被称为第一次数学危机。 因为这一“新数”的发现,希伯索斯被投入海中处死。那么希伯索斯所发现的是一个什么样的数呢?这节课我们就来揭开它神秘的面纱。问题1: 边长为1 的正方形的对角线的长度是多少?学生利用勾股定理很容易算出是。 问题2: 是一个整数吗?问题3: 它是一个分数吗? 它是一个什么样的数呢?这样从情境入手, 步步深入,自然地展开本节课的教学。 案例2 神秘的数组 “神秘的数组”介绍了美国哥伦比亚大学图书馆收藏的一块编号为“普林顿322( Plimpton322) ”的古巴比伦泥板。 教学时可以以泥板上的数字来展开教学内容。 问题1: 泥板上的60、45、75 这组数之间有什么关系? 学生通过计算可得到: 问题2: 以60mm、45mm、75mm 为边长画△ABC, 并观察它的形状. 通过观察可以发现△ABC 是直角三角形, 然后通过从特殊到一般的方法归纳出一般结论。数学教材中的知识往往是经过千锤百炼的, 被教材编写者“标本化”地呈现在学生面前, 失去了生气与活力。通过情境创设可以再现数学惊心动魄的发展历程,探索先人的数学思想, 缅怀先人为科学而献身的精神,还其自然,恢复其生气。2.2 通过知识教学融入数学史数学史不仅可以给出确定的数学知识, 同时还可以给出知识的创造过程。 对这种创造过程的再现, 不仅可以使学生体会到数学家的思维过程, 培养其探索精神, 还可以形成探索与研究的课堂气氛, 使得课堂教学不再是单纯地传授知识。对于勾股定理的证明, 我国古代数学家给出了众多的方法, 而这些方法大都是通过拼图验证的, 简明直观。将其中经典的验证方法编入教材, 融入课堂教学之中, 不仅是可能的, 也是必要的。案例3 验证勾股定理公元3 世纪我国数学家赵爽证明勾股定理的“弦图”如图3。 对这种验证方法的介绍,可以通过数学的再创造, 分析它的探索过程, 使证明思路逐渐显露出来。课堂中再现当年数学家的创造过程, 十分有助于学生理解与掌握所学的容。剪拼: 剪出四个全等的直角三角形, 并拼成如图3 的形状。 验证: 根据面积关系得到展示学生的证明方法, 如图4: 学生称四个直角三角形的面积为“朱实”, 中间小正方形的面积为“中黄实”, 以弦为边的正方形的面积为“弦实”, 则“朱实四+ 中黄实=弦实”, 即。当学生们发现自己的验证方法和古人的证法同出一辙时, 自信和自豪之心将油然而生。学生的验证方法充分运用了直角三角形易于移补的特点, 其相应的几何思想是图形经移、补、凑、合而面积不变, 这种思想不仅反映了我国传统文化中追求直观、实用的倾向, 而且其中展示的“出入相补”原理和数形结合的思想是我国传统文化的精髓, 这对于继承和发扬传统文化起着潜移默化的熏陶作用。 学生对“出入相补”原理的开拓性工作, 在中国古代数学史上具有重大影响。 2002 年在北京举行的数学家大会上将此图作为大会的中央图案就不足为奇了。2.3 通过解答历史名题融入数学史历史名题的提出一般来说都是非常自然的, 它或者直接提供了相应数学内容的真实背景, 或者揭示了实质性的数学思想方法, 这对于学生理解数学内容和方法都是重要的。 通过对历史名题的解答和探究, 可以使枯燥乏味的习题教学变得富有趣味和探索意义, 从而极大地调动学生的积极性, 提高他们的兴趣。 对于学生来说, 历史上的问题是真实的, 因而更为有趣。案例4 “鸡兔同笼”在学习完解方程之后,选取我国古代名著《孙子算经》中的“鸡兔同笼”问题,“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?做为习题。在没有学习方程的知识之前,学生们对于这样一个复杂的应用题大多数都是一头雾水,没有什么解题思路。但是在老师的启发之下,学生们动脑开始运用方程的思想去解决一个历史名题,最后,通过解方程,得出了正确的答案,这对于学生们来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识是有用的,大大提高了学生学习的积极性,起到了事半功倍的作用。案例5“折竹问题”选取《九章算术》中的“折竹问题”: 今有竹高一丈, 末折抵地, 去根三尺, 问折者高几何?做为《勾股定理的应用》的习题。通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。古代数学学技术的辉煌成就激发了学生爱数学、学数学的情感。这种情感是一种潜在的驱动力,它对于培养学生的学习兴趣,立志投身数学研究有着重要意义。这些名题历史久远, 解法经典, 影响广泛。 许多历史名题的提出和解决往往与历史名著和大数学家有关, 学生会感到一种智力的挑战, 也会从学习中获得成功的享受, 这对于学生建立良好的情感体验无疑是十分重要的。2.4 通过方法比较融入数学史著名科学家巴甫洛夫指出:方法是最主要和最基本的东西。 一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就。 如果方法不好,即便是有天才的人也将一事无成。 数学教学必须要使学生明白,任何方法仅仅是许许多多的方法之中的一个, 其中有许多你可能联想都未曾想过。 那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,这些都是自负的表现。 而自负是思维的重大过失,它会扼杀真正的思维。事实上,数学教学中涉及的许多问题,从它的历史到现在,经过数代数学家们的不懈努力,大都产生过不少令人拍案叫绝的各种解法。 如勾股定理,就有面积证法、弦图证法、比例证法等300 余种;求解一元二次方程, 历史上就有几何方法、特殊值代入法、逐次逼近法、试位法、反演法、十字相乘法和公式法等;求不规则图形的面积,历史上也有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法以及现代的微积分方法。 通过搜集比较历史上的各种不同方法之后, 不仅能使学生更好地领会每种方法的内在本质,而且能启发学生,这对培养知识面宽、有能力、有信心、灵活多变的人大有帮助。2.5 通过追踪历史起源融入数学史 数学固然起源于人类对日常生活现象的观察,但它决不简单, 有一定的难度, 需要时间去体验、把玩并体会它的意蕴。 譬如无限的概念,“向人类头脑提出的挑战,激发了人类的想像力,是思想史中任何其他单个问题都无法比拟的。 无限显得既生疏又熟悉,有时超出了我们的领悟能力,有时又自然而易于理解,在征服它的过程中,人也砸碎了将自己束缚在地球上的镣铐。 而为了实现这一征服, 需要调动人的一切能力——人的推理能力,诗一般的想像力以及求知的渴望。 ”①再如代数符号的产生,代数符号早期是没有的,人们使用文字代替,到了古希腊人们才开始用单词表示,中世纪才开始用单个字母表示。 再后来人们才用特殊的字符来表示,每一次的演进,都凝聚了数学先贤们大量的心血和智慧, 都充满了古代数学家们的神思技巧;还有函数概念的发展,从笛卡尔给出最简单的函数概念出发, 经莱布尼兹、贝努利、欧拉、柯西、黎曼、狄利克雷、维布伦等人之手, 一步一步的发展,其间经历了大约六七次扩充,才形成了我们今天看到的函数概念。 追踪历史起源,就是要引导学生去揭示或感受知识发生的前提或原因、知识概括或扩充的经过以及向前发展的方向,引导学生在重演、再现知识发生过程的活动中,内化前人发现知识的方法和能力。 使学生在掌握知识的同时,还能占有镌刻于知识产生中的认识能力,这种认识能力正是构成创新思维能力的核心。2.6 通过揭示思维过程融入数学史将数学研究中的思想和方法的要点原原本本地告诉学生,引导学生沿着科学的艰险道路作一次富有探索精神的、充满为真理而斗争的崇高动机的旅行, 使学生充分领略以前数学大师们的灵感,承受他们的启迪,可以从中学到他们的策略和经验等。 譬如, 讲数学的抽象性时, 就可以原原本本地向学生展示欧拉解决七桥问题时的思考过程,讲类比时,可以向学生全面介绍自然数平方的倒数之和问题的产生背景、当时的情形及欧拉解决该问题时的奇思妙想等; 结合几何知识的学习,可以向学生揭示历史上有关几何第五公设的、令一代又一代数学家忙碌了二千多年的、各种各样的思考过程及最终的解决办法。 让数学史曾闪烁过光芒的火花,重新在学生的心中点燃。前人的成功和失误,都是后人聪明的源泉。 数学史可以将逻辑推理还原为合情推理, 将逻辑演绎追溯到归纳演绎。 通过挖掘历史上数学家解决问题的真谛,学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生更具有洞察力。2.7 综合运用 如果一堂课选用以上适当的途径和方式渗透于教学的每一个环节,这堂课将变得更加丰满,更具有吸引力。案例:等比数列求和公式 1. 情景创设:采用一则故事改编自意大利数学手稿中的一道问题2. 知识教学:用五种方法对等比数列求和公式进行了推倒,其中解法3师古希腊欧几里德的《几何原本》第九卷中给出的方法,它是由等比数列定义出发进行推导的:3. 公式运用:解决了一些数学史料中的问题,比如出现在古埃及希克索斯草纸中的一个问题:一位妇人的家里有7间储藏室,每间储藏室里有7只猫,每只猫捉了7只老鼠,每只老鼠吃了7颗麦穗,每棵麦穗长出7升麦粒,问储藏室,猫,老鼠,等各有多少?本例教学以“创设情境-知识教学-模式应用-巩固练习”四个环节展开,环环相扣,循序渐进,等比数列前n项求和公式作为主线贯彻整个教学过程,可以说它是这堂课的骨架,这节课能丰满起来,是因为引入了丰富,有趣的数学史料,他们是这堂课的肌肉;而这骨,这肉背后所隐含的灵魂却是公式的推导方法,以及公式运用,因此,可以用“公式是骨,史料是肉,方法是魂”来概括这节课的特点。3 总结在数学史融入数学教学的过程中,最常遇见的困难就是如何对材料适当地剪裁,使其与课程主题融合,以达到数学史的利用能自然、协调,不至于过分突兀,这应是我们追求的最佳效果。 要达到这个目的,那就要求教师在教学活动中,必须注意结合教学实际和学生的经验与体验依据一定的目的,对数学史资源进行有效的选择、组合、改造与创造性加工,使学生容易接受、乐于接受, 并能从中得到有益的启迪。 切实发挥以史激情、以史引趣、以史启真、以史明志的功能。 正像法国著名数学家包罗·朗之万所说: “在数学教学中, 加入历史具有百利而无一弊。
在数学教学过程中,数学文化占有重要的地位,给学生更多的人文气息,有效地激发了学生的学习兴趣,使原本枯燥的教学活动变得更加生动有趣。所以,缺少了数学文化的数学教学就会走入一定的误区,并且会慢慢使学生失去学习的兴趣和动力。通常来说,针对小学数学的几个重点部分,教师可以有针对性地渗透数学文化。通过结合实际教学情况,从多个方面对在小学数学教学过程中渗透数学文化进行了简要分析,旨在能够有效提高教学效率,保证学生的综合素质。通常所述的数学文化就是指数学的思想和精神等,同时还包括方法的形成和发展。从广泛意义上来说,数学史和数学美都属于数学文化的范畴。在人类文化宝库中,数学是重要的组成部分,而且数学素养也是每一个公民应该具有的基本素养。所以,作为一个小学数学教师,应该有能力进行基本的数学教学之外,还应该能够培养学生的数学素养,在课堂教学过程中能够有效渗透数学文化,从而促进学生的全面发展。一、引导学生感受、发现和体会数学美(一)展示小学数学的简洁美从古至今,数学一直追求简洁美,通过不断的发展和改进,数学变得更加的简洁。在数学语言表达上充分体现出了数学的简洁美,教师通过简单的语言表达,对数学概念和法则进行了简要的总结。例如,在学习数学加法法则的时候,“数位对齐,各位加起,逢十进一”,复杂的加法就被这简单的十二个字完整地总结了下来。同样,在数学课堂上还有“增长了两倍和增长到两倍”,这样的语言多了就会显得冗杂,正是这样简单的文字准确地表达了数学意义。由此可见,数学的简洁美既实用又方便。(二)体现小学数学的对称美小学数学中对称美也是非常明显的,尤其是在一些图形或者物体上。对称美主要就是指在图形或者物体上相对于某个点、直线或者平面来说,在大小、形状和排列上能够形成一一对应的关系。点对称、线对称和面对陈都是对称的一种。所以教师在开展教学的时候,可以时刻注重引导学生发现数学的对称美、例如,在长方形和正方形的时候,教师可以让学生画出对称线,从而让学生慢慢体会数学的对称美。(三)凸显小学数学的奇异美小学数学还有一种美,被称作奇异美。奇异美可以展现在数学的几何形式上、外在形式上和计算方法上。可以说,数学奇异美也是无处不在的。所以,教师在进行数学教学的时候,应该引导学生领悟奇异美,激发学生学习的兴趣。例如,在1996++1992++……+4+3-2-1中,最后计算出的结果是1996,尽管后面有许多数的运算。教师可以利用这种奇异美,来激发学生的学习兴趣,使学生能够更加积极地投入到数学学习过程中。二、渗透数学文化史,激发学生学习兴趣,提高综合素质(一)渗透数学史,提高学生解决问题能力教师在数学课堂教学中,应该充分发挥教师的主导作用,同时给与学生适当的获取知识的空间,保证教学效率。这就需要在教学过程中,教师应该合理使用数学史知识,从而使教学内容更加丰富。使教学内容变得更加丰富,有效利用数学史知识,能够使数学知识变得更加有趣味性。所以,教师想要保证数学教学效率,既要教会学生解题的方法,同时还应该使学生掌握实际应用的思路,从而真正实现数学教学的最终目的。例如,在学习三角形的时候,教师要让学生练习家里面房梁的三脚架,让学生知道三角形具有稳定性的特点,从而使学生掌握更加扎实的数学知识。(二)了解数学家的品质,进行德育教育在数学史中,有许多数学家,凭借其顽强的毅力和品德,为数学的发展做出了重要的贡献。教师可以给学生讲解一下这些数学家的事迹,让学生能够养成顽强的毅力和品德,使学生养成认真仔细的习惯,在追求真理的道路上更好地发展。例如,在学习圆周率的时候,教师可以给学生讲解一下祖冲之的故事,正是因为其付出了许许多多的辛苦和努力,最终才换来了如此丰硕的成果。通过这些成功教育,能够使学生不断提高自己的意志品质,成为一个高素质的人才。(三)开展合作学习,体现数学文化在小学数学教学过程中,合作学习文化受到了许多师生的欢迎,正是因为合作学习的帮助,才使得学生的学习效率显著提高,教师教学也变得更加轻松。所以,教师在开展小学数学教学的时候,可以组织学生开展合作学习,渗透合作学习文化,使学生能够通过合作学习,协调努力,共同学习数学知识,解决数学问题。例如,在学习《认识人民币》的时候,可以开展合作学习,让学生通过共同的努力来更好地学习认识人民币知识,从而起到很好的教学效果。三、结语综上所述,数学在人类社会的发展中发挥着越来越重要的作用,提高学生的数学素养对于学生的综合发展有着重要的帮助。所以,数学教师应该在数学课堂教学过程中,加强数学文化的渗透,让学生能够感受到数学知识的实用性。同时,让学生了解数学思想,使其能够掌握基本的数学思维方式和方法,促进自身综合素质的提高。
摘要:在对数学背景的统计中,我们发现,数学史知识的引入占了很大的比重。
关键词:引入教学史、穿插教学命题
随着数学教育理念的转型和数学教学观念的变革,我国的基础教育发生了重大的变化。自2001年9月实施新课程标准以来,我国在数学教材的写上也相应地发生了很大的变化。受传统的教育机制的影响,我国以前的数学教育偏重于机械训练和题海战术,教学不从学生的生活实际出发,无论是教材还是教学都脱离知识背景,没有教学情境,这种应试教育已不适应国际数学教育的发展潮流,已不符合现代素质教育的要求。现在的基础教育中,虽然不同的学校使用的新教材版本不同,但都是根据新一轮的课程改革标准编写的。这些教材无论从教学理念,还是数学内容上与人教版教材(人教社2001)发生了很大的变化。2005年出版的《全日制义务教育数学课程标准(实验稿)》在3个学段的教材编写建议中,也都明确提出应介绍有关的数学背景知识,“在对数学内容的学习过程中,教材中应当包含一些辅助材料,如史料、进一步研究的问题、数学家介绍、背景材料等”[1]。现行使用的新教材在教材的编写上,数学背景知识的引入增加,而且背景知识的水平也有了较大的提高,“背景不仅包括个人生活,公共常识还,还包括科学情景”[2]。
在对数学背景的统计中,我们发现,数学史知识的引入占了很大的比重。新人教版九年义务教育数学教材中有关数学史知识的引入,无论是数量还是质量都比以前有很大的提高。新版中的数学史知识题材更广泛,引入更详细生动,“在引入数学史知识的同时,穿插一些数学名题,包括一些悬而未决的数学题,并注意渗透数学思想方法”[3]。数学史知识的引入教材,既能增加学生学习数学的兴趣,更能帮助他们了解数学知识的历史发展过程,增加学生的数学文化素养,这对理解数学中的有关内容会有很大的帮助。
一、激发学生学习数学的兴趣。
教材中引入数学史知识有助于提高学生的学习兴趣,增强学生学习数学的信心。
在中小学现在使用的新教材中,很多概念,知识点的引入,不再是直接给出。而是创造一种智力和社会交换的环境,让学生置身于这种环境中,这样,为数学教学中情景教学提供了材料。数学史知识的引入,通常是以讲故事的方式进行,符合儿童的心理特征。就大多数中学生而言,数学与其他学科相比确实是比较抽象、枯燥和乏味,那么如何把数学课讲得引人入胜、生动活泼就成为数学教师的一大课题。作为数学教师不仅要透彻地了解所教的数学,而且还要从宏观上来认识数学知识的发生与发展,从而能够丰富教学内容。实际上,知识丰富引入生动的老师在授课时更能激发起学生学习数学的兴趣,而那些照本宣科、就事论事的老师在授课时只能让学生觉得数学是枯燥无味的。例如在教授一些定理时,以前的老师就是直接给出定理,然后再举例子,这样教的结果是导致学生学习时死记硬背、生搬硬套,如果结合数学史的历史故事,引入它们的来源及历史演变过程,定会引起学生学习的兴趣。再如,老师在教授二元一次方程组时,引入鸡兔同笼问题、百鸡问题,必然会引起学生的兴趣。兴趣是最好的老师,学不好数学的一个关键就是不喜欢、没兴趣!数学较其他学科来说,本来理论性就强,学生感到抽象,如果教材板着脸孔,再加上教师照本宣科,学生就更觉得数学枯燥无味,久而久之,就会厌学,甚至怕学。故事总比单纯的知识有趣,从故事引入数学知识,在背景情境中学习数学能激起学生学习数学的兴趣,而数学家的刻苦钻研的精神与卓越成就,数学中一些有趣问题的解决,以及数学中一些悬而未决的问题,更够激发学生学习的极大兴趣。
二、.帮助学生理解数学
教科书中的数学教学知识,都是成熟的科学知识。我们从教材上看到的知识,都是数学家们的发现结果,是数学成果浓缩的形式。这些数学结论的起源是怎样的,又是怎样发展演变的?通过数学史知识,我们可以了解当时的数学家为什么和怎样研究数学的。例如勾股定理,如果仅仅给出定理证明,学生也能够掌握,但是,如果教材引入中国古代教学家的证明以及古希腊毕达哥拉斯对这个定理的发现,就会增加学生学习这个定理的兴趣。苏联数学教育家斯托利亚尔说过:“数学教学是数学活动(思维活动)的教学,而不仅是数学活动的结果———数学知识的教学”[4]。学习数学重要的是学习过程,而不是学习数学的结论。教材上的数学公式、定理都是前人苦心钻研经的哲学思想,我们从书本上,已看不到数学发展过程,只看到数学结论,妨碍了我们对这些数学知识的理解。教材中的数学教学内容,是成熟的科学知识,但对学生来说就是全新的,是一个再发现的过程,正确引导学生对知识的再发现,对于学生学习数学知识是很有帮助的`。荷兰数学家赖登说过:“传统的数学教育中出现了一种不正常的现象,我们把它们称作违反数学法的颠倒,那就是说数学家们从不按照他们发现创造真理的过程来介绍他们的工作,至于教科书做得更为彻底,往往把表达思维过程与实际创造的过程完全颠倒,因面严重的阻塞了再发现与再创造的通道”[5]。中小学数学教材中引入数学内容相关的数学史知识,对提高学生的数学思想方法和学生的思维能力有很大的帮助。“数学发展的历史,实际就是数学思想方法的发展过程”[6],而数学教材中的知识是对数学史知识快速,集中的再现,通过引入与数学知识相关的数学史知识,再现了数学知识形成和发展的过程,使学把握知识的来龙去脉,同时数学们解决问题的过程和发现创造数学知识的思维活动过程也清晰的呈现给了学生,让学生了解数学家们是怎样去思考问题的,对于培养学生合理的推理和对学生渗透数学思想方法有很大的帮助。
三、培养学生的人文精神
素质教育要求改变原来授受型的教学,教学要激发学生独立思想,培养学生探究问题的能力,理解知识产生和发展的过程,培养学生的科学精神和解决问题的能力。中小学数学中引入数学史知识,营造了一种科学情景,让学生在学习数学中感受古今中外数学家的探究精神和严谨的治学态度,激发学生的探究热情。从而有利于培养学生的探究的学习态度和精神,新一轮的课程改革,要求我们不能只重视思维的结果,更重要的是重视思维的过程。通过数学史知识的引入,再现数学知识的发展过程,让学生从数学家的思维方法获得思想启迪,树立科学世界观。
《九年义务教育数学新课程标准》指出,在初中教材中引入数学史知识,让学生感受数学的人文精神。数学史知识的作用,体现在对人的观念、思想和思维方式的一种潜移默化的影响,也体现在对人类在数学活动中的探索精神和进取精神的崇尚。在教材中和数学教学中引入数学史知识,对学生进行人文精神培养,培养学生探索未知,追求真理的人文精神。数学是一门不断变化发展的学科,它是运动的,体现了辩证法。数学中的许多定理、公式都是通过归纳、演绎的方法得到的,体现了人们认识世界的科学方法。通过数学家们刻苦钻研、锲而不舍的的历史故事,教育学生树立坚忍顽强的信念。
张奠宙先生曾指出:在数学教育中,特别是中学的数学教学过程中,运用数学史知识是进行素质教育的重要方面.。九年义务教育数学新课程重视培养学生的数学能力,同时注重对学生进行科学人文教育。现行初中数学教材中增加了大量的数学史资料,我们在数学教学中要充分利用这些资源,培养学生的数学思维能力,同时加强对学生的科学人文教育,帮助学生树立起正确的人生观、世界观,培养学生科学的思想方法和高尚的道德品质。
参考文献:
[1]中华人民共和国教育部制订.全日制义务教育数学新课程标准人教社,2005
[2]九年义务教育小学数学教材人教社2007
[3]九年义务教育初中数学教材人教社2007
[4]《教育学原理》华东师范大学出版社2005
[5]李文林《数学史概论》科学出版社2001
[6]钱佩玲《中学数学思想方法》北京师范大学出版社2004
《数学课程标准(实验)》提出:“数学是人类的一种文化,他的内容、思想、方法和语言是现代文明的重要组成部分。”数学是一种科学,更是一种人类的文化。营造数学文化的人文氛围,揭示数学的文化内涵,在数学教学中,渗透数学史是必不可少的!我们认为小学数学必须以数学文化内涵为导向重构教学,让数学史走进小学数学课堂,通过这些丰富内容的呈现,激发学生学习数学的兴趣,掌握数学知识的精华,真正提高学生的数学素养。只有如此,才能真正实现以学科教育促进学生的全面发展。如何让数学史走进数学课堂?1提高教师的自身的数学文化素养。现在的数学教师中有相当一部分教师基本的数学文化素养,部分教师知识面太窄,对数学的文化内涵无从把握。有的教师甚至从未读过数学史或未完整地读过数学史,于是他们不能正确的理解“渗透数学文化思想”的重要内涵。基础教育的教师,尤其是贫困边远地区的教师团队在这一方面的问题就更为严重,由于供教师参考的关于渗透数学史教育的文献比较少,所以他们自身的数学文化素养相对滞后。大多数数学教师把有关的数学史知识轻描淡写,一带而过,大大忽视了数学史对数学学习的促进作用,。培养什么样的人才很大程度上取决于老师的教育思想和教育行为。教师的文化底蕴是数学“文化”的保证,教师对教材的理解,对数学的理解,对教学活动的组织都反映了教师的文化修养。所以说,提高教师的自身的数学文化素养迫在眉睫。首先,学校单位应有计划地组织小学教师学习、培训。而作为教师本身要提高意识,树立数学史的教育价值理念。有成长意识的教师会主动学习与自身教学有关的资料,熟悉学科最新动态,尽可能扩大有关教学的知识面,从而让自己跟上时代潮流,做一个专业型教师。从而把数学史融入到数学课堂教学当中,体现数学的文化价值。 2转变重“知”轻“识”的功利化观念在各种考试压力下,仅仅关注学生对数学知识的接受,大搞题海战术,只会越来越使学生喘不过气,从而更加厌恶数学。所以,在数学教学中,我们必须树立全面育人的教育观,实施“减负”政策,认真贯彻素质教育,逐渐有序的把数学史的教育渗透到教学中去,重视对数学概念的理解、掌握数学思想与方法的运用。使学生能轻松愉悦的面对数学,让他们不再是空洞的解题训练,帮助学生树立好数学的信心。 3 改进教材编制, 以数学之趣激发兴趣。提高学习热情俗话说:“兴趣是最好的老师。”学习数学,不应是“概念—定义—定理—解题”那样枯燥乏味。所以,为了能在教学过程中激发学生的学习兴趣,在小学数学教材中,应不同程度的适当的选一些有趣的数学史料作为背景知识。在小学阶段,数学史知识能更好的激发孩子们学习数学的兴趣,使学生更好的理解数学。(1)加强低年级段的数学史教育。从一年级开始就渗透数学史知识,在每册中都适当安排一些内容,让学生尽早接触。从儿童心理年龄特征看,在低段课程教材中恰当地融入数学史,更能吸引儿童,激发他们学习数学的热情。(2)增加新的设计模式。目前总体上说,小学数学教材的内容设计主要有两种比较好的模式。其一是“习题内容引出数学史”,像人教版,小学数学五年级上册的先由习题第5题创设的游戏情景引出“有些偶数可以表示成两个质数的和”的结论,进而通过提出问题而引出歌德巴赫猜想的历史由来,以及我国数学家对此所做出的贡献。另外一种模式是“阅读材料式数学史”,比如说西师版的在“倍数与因数”这章内容后以阅读材料的形式体现出来的:以“陈景润”为主线展开,有陈景润的故事引出哥德巴赫猜想。像这样的丰富的内容模式设计,使得数学史的渗透才更加全面,更具效果,能激发学生强烈的求知欲、好奇感,从而产生探索的快乐感,发生浓厚的学习兴趣。因此,教材编写者有必要根据不同的情况设计不同的模式,以达到效果最优化。4、让数学方法、数学名题走进课堂 “问题是数学的心脏”这是数学教师所熟知的由美国数学家哈尔莫斯所说的一句名言。而作为教师,就应该善于创设问题,让数学课是由一个又一个的问题,一层又一层深入的问题组成的。而用数学方法论激活问题可以使教学具有灵活性,开放性和探索性。进行一题多解、一题多变,产生变化性问题;引导解题后反思,提出引申性问题等,激发学生的好奇心。同时需要结合数学名题,如高斯的故事:七岁时高斯还不到几秒钟把 1到 100的整数1+2+3+4+……97+98+99+100用1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,50×101=5050的方法快速的算出了答案。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。这些具有精妙解题思想的数学名题,必能深深地吸引学生,帮助他们掌握知识的来龙去脉,学习到数学家的坚毅品质及为数学二合科学的献身精神,进而让学生养成良好的学习态度。 5、 运用数学史开展各种活动丰富课堂怎样把枯燥无味的数学课堂变成吸引学生的磁场呢?我们可以通过各种小活动丰富课堂,活跃课堂气氛。实施这种方式的关键在于最大限度的发挥学生的能动性和积极性。 第一,课堂上可以进行一些与数学有关的小游戏,数学游戏的参与,既增加了学生的学习兴趣,也让学生了解数学家解决问题的特殊见解。 第二,开展读书交流活动。数学史课外书籍的阅读和交流是一种很好的方式,利用假期的时间提出任务,要求学生按自己的喜好阅读数学史书籍、故事,然后在活动课堂上交流自己的心得体会。学生都是有悟性的,他们可以可以从陈景润等人研究数学奥秘的辛苦中获得一份学习的勇气; 可以从祖冲之的圆周率计算比外国早一千年获得民族自豪感…… 第三,影视资料的运用。影视资料具有直观形象性这么一个优点,学生在听的同时又可以看,这种眼耳并用的声像结合,非常符合符合小学生的思维习惯。在活动课当中播放一些相关的数学史影视资料使介绍数学史知识时图文并茂,妙趣横生,更能吸引学生,激发他们的兴趣。所以,利用计算机这一现代化的工具为数学史教育服务,把某一数学知识的发展过程娓娓道来,生动有趣。激发他们学习数学的欲望和自信。 数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富。在数学文化的背景下学习,能吸引学生自主性地参与学习活动,促使他们通过动手实践、自主探索与合作交流,获得必需的数学。这样才能有效地彰显它的文化价值。 最后,建议你多看一点数学史方面的书籍。国内现在也有一些书是讨论数学史与数学教育的,像汪晓勤,张维忠的书,
172 浏览 5 回答
202 浏览 2 回答
145 浏览 2 回答
152 浏览 2 回答
284 浏览 2 回答
249 浏览 2 回答
356 浏览 2 回答
100 浏览 2 回答
229 浏览 2 回答
146 浏览 2 回答
157 浏览 2 回答
341 浏览 2 回答
171 浏览 3 回答
125 浏览 2 回答
255 浏览 4 回答