建立计量模型 实证研究可以没有理论模型;但如有好的理论模型作为基础,则更有说服力。 回归分析一般只能说明变量之间的相关性,要对变量之间的因果关系做出判断,常需要经济理论。 即使无法提供完整的理论模型,也应该进行一定的理论分析。 理想情形:从理论模型推导出计量模型(econometric model),即待估计的回归方程。 好的实证论文,需要讲好的“故事”(story),然后用数据来证实或检验此故事。 对于回归函数的具体形式,可考虑线性、对数(变量只取正数且有指数增长趋势)、双对数、非线性(边际效应不是常数)等。 在设定模型时,应尽量使用常识(common sense)与经济理论(economic theory)。比如,将“人均变量”(如人均消费)与“人均变量”(如人均 GDP)相匹配;使用实际汇率来解释实际进出口。 又比如,考虑 FDI 对经济增长的作用。由于 FDI 起作用需要时间,如果把当年的增长率对当年的 FDI 进行回归,可能没有太大意义。比较适当的做法是,考虑期初的 FDI 对随后五年(或若干年)经济增长的作用(这样做也可缓解双向因果关系)。 如不确定该如何设定计量模型,可借鉴文献中同类研究的模型设定。 模型既不能过于简单(解释变量过少),也不宜过于复杂,而应当保持适当的简洁(keep it sensibly simple)。 在选择解释变量时,“从小到大”(specific-to-general)的建模方法简单易行,但可能偏差较大(因为存在遗漏变量); “从大到小”(general-to-specific)的建模方法偏差小,却不易执行。实践中,常采用折衷方案,即选择简单而有解释力的模型。