材料学是学生接触材料领域、定位未来方向的入门课程,学习和掌握该课程内容意义至关重要。下文是我为大家整理的材料学方面论文的 范文 ,欢迎大家阅读参考!
浅析高分子材料成型加工技术
摘要:近些年来,国防尖端工业和航空工业等特殊领域的发展对高分子材料成型的加工技术要求更高,更精细。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的 方法 ,对促进我国高新技术及产业的发展具有重要的意义。
关键词:高分子材料加工方法成型技术
一、前言
近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
二、高分子材料成型成型加工技术的相关定义
1.高分子材料
高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。
2.高分子材料成型加工技术
在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。
三、高分子材料成型加工技术的方法
高分子材料的的成型方法有挤出成型、吹塑成型、注塑成型、压延成型、激光成型等。以下介绍的是现今高分子材料成型加工的主要技术方法。
1.挤出成型技术
挤出成型技术是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。它的具体原理是高分子原材料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。挤出成型又有共挤出技术、挤出注射组合技术、成型技术、反应挤出工艺与固态挤出工艺等。
2.注塑成型技术
注射成型技术是目前塑料加工中最普遍的采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件[2]。注射成型技术根据组合材料的特征,又有以组合惰性气体为特征的气体辅助注射成型,以组合组成化学反应过程为特征的反应注射成型,以组合混合混配为特征的直接注射成型,以组合不同材料为特征的夹心成型等多种方法。
3.吹塑成型技术
吹塑技术一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有拉伸吹塑和多层吹塑。
四、高分子材料成型加工技术的发展新趋势
目前,高分子加工成型技术正在快速地进步,它的发展总方向是高度集成化、高度产量、高度精密化,不断实现对加工制品材料的聚集态、组织形态与相形态等的控制,最大程度地达到制品高性能的目的。具体的创新技术之处主要体现在以下几项新技术上。
1.聚合物动态反应加工技术
聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的[3]。这项技术解决振动力场下聚合反应加工过程中质量、动量和能量传递与平衡的难点,从技术上解决了设备结构集化的问题。
2.热塑性弹性体动态全硫化制备技术
这项技术引入振动立场到混炼挤出的全过程,实现混炼过程中橡胶相动态全硫化,控制硫化反直的进程,防止共混加工过程共混物相态发生发转。此技术非常有意义,研制发明出新的热塑性弹性体动态硫化技术与设备,能有效地提高我国TPV技术的水平。
3.信息存储光盘盘基直接合成反应成型技术
此技术是将盘级PC树脂生产、中间储运与光盘盘基成型三个过程融合为一体,联系动态连续反应成型技术,研制开发精密光盘注射成型装备,达到有效提高产品质量、节约能源,降低消耗的目的。该技术避免了传统方式中间环节多、能耗大、周期时间长、成型前处理复杂、储运过程易受污染等缺陷。
五、结语
综上所述,我国在新时期要把握高分子成型加工技术的前沿,注重培育自主的知识产权,努力打破国外技术的垄断,实现科学技术研究与产业界的良好结合的目的。这能有效地将科学研究成果转化为实际的生产力,有效地加快我国高分子材料成型加工技术及其相关产业的快速发展。
参考文献
[1] 王云飞;孙伟.浅谈高分子材料成型加工技术[J].城市建设理论研究,2012,(11): 32.
[2] 甄延波.高分子材料成型加工技术的进展[J].化工中间体,2012,(09): 25.
[3]黄贵禹.浅析高分子材料成型加工技术[J].东方 企业 文化 ,2011,(16): 97.
浅析高分子材料成型
摘要:我国的高分子材料成型技术在工业上取得了飞速的发展,本文主要阐述了高分子材料成型的原理以及高分子材料成型的加工技术。
关键词:高分子材料;成型;技术
一、前言
高分子材料是指以高分子化合物为基体组分的材料。高分子材料按来源可分为天然高分子材料、合成高分子材料;按化学组成分类可分为有机高分子材料、无机高分子材料;按性能可分为通用高分子材料、新型高分子材料。高分子材料比传统材料发展迅速的主要原因是原料丰富、制造方便、加工容易、品种繁多、形态多样、性能优异以及在生产和应用领域中所需的投资低,经济效益比较显著。高分子反应加工分为反应挤出和反应注射成型两个部分,目前我国普遍采用的设备包括螺杆挤出机和螺杆注射机。现阶段,我国的高分子材料成型也取得了较好的成绩。
二、高分子材料成型的原理
高分子材料的合成和制备一般都是由几个化工单元操作组成的,高分子反应加工把多个单元操作熔为一体,有关能量的传递和平衡,物料的输运和平衡问题,与一般单个化工单元操作完全不同。传统聚合过程解决传热和传质问题主要是利用溶剂和缓慢反应来进行的,但是在聚合反应加工过程中,物料的温度在数分钟内就能达到400℃~800℃,此时对于反应过程中产生的热,如果不能进行脱除的话,那么降解和炭化将会发生在物料中。传统的加工过程是通过设备给聚合物加热,而需要快速将聚合生成的热量通过设备移去是聚合反应加工所进行的,由此可见,必须从化学和热物理两个方面开展相应的基础研究。
高分子材料的物理机械性能、热性能、加工性能等均取决于其化学结构、分子结构和凝聚态的形态结构,而加工工艺与高分子材料的形态结构关系是非常密切的。
流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。它是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。高分子材料成型加工成制备的理论基础是高分子材料流变学。高分子材料的自身的规律和特点是伴随化学反应的高分子材料的流变性质而产生的。
三、高分子材料成型的加工技术
(一)聚合物动态反应加工技术及设备
目前国外已经研发出可以解决其他挤出机作为反应器所存在的问题,即连续反应和混炼的十螺杆挤出机。在我国高分子材料成型加工工业的发展中占有极其重要的地位,但是我国的高分子材料成型的加工技术的开发目前还处于初步阶段。缩聚反应器的反应挤出设备就是指交换法聚碳酸酯连续化生产和尼龙生产中的比较关键的技术,除此之外,我国每年还有数以千万吨的改性聚合物生产,反应挤出技术及设备也是其关键技术。
采用传统的加工设备存在一些问题,例如传热、化学反应过程难以控制等,另外投资费用大、噪音大等问题。无论是在反应加工原理还是设备的结构上,聚合物动态反应加工技术及设备与传统技术都完全不同,将聚合物反应挤出全过程引入到电磁场引起的机械振动场,从而达到控制化学反应过程、反应制品的物理化学性能以及反应生产物的凝聚态结构的目的,这就是聚合物动态反应加工技术及设备。高分子材料成型加工是高能耗过程作业,无论是挤出、注射还是中空吹塑成型塑料原理都必须经过熔融塑化及输送这一基本和共性的过程,目前普遍采用的设备包括螺杆挤出机和螺杆注射机等。该技术使得控制聚合物单体及停留时间分布不可控的问题得到了解决,而且也使得振动立场作用下聚合物反应加工过程中的质量、动量以及能量传递和平衡问题得到了解决,同时也使得设备结构集成化问题得到了解决。新设备的优点很多,例如:体积重量小、适应性好、噪音低、可靠性高等等,而这些技术是传统技术和设备是比不了的。
(二)以动态反应加工设备为基础的新材料制备新技术
此技术的研究实现,加强了我国在该领域内的发言权。以动态反应技术为基础方向,进行深入的研究,从而产生了新的材料制备技术。我们以存储光盘盘基为基础原型,以反应成型技术直接作用于其上。通过对这些技术的研究改进,改变了传统技术中多环节、消耗大、复杂度高、周期长、而且环境污染比较严重等诸多不利因素。通过学习研究,可以把制作光盘的PC树脂原料工业、中途存放、盘基成型工业串联于一体,提高了工业生产效率、减少了资源浪费、能够完全有效的进行控制,而且产品的质量有大幅度的提高。
聚合物/无机物复合材料物理场强化制备新技术。研究表明,对无粒子进行适当的处理,可以得到一些好的效果,比如说利用聚合物进行原位表面改性处理、原位包覆、强制分散等处理后,就可以使我们复合材料成型。
热塑性弹性体动态全硫化制备技术。此技术将混炼引入到振动力场挤出全过程,为实现混炼过程中橡胶相动态全硫化,对硫化反直进程进行控制,从而使得共混加工过程共混物相态反转问题得到了解决。实现自主知识产权的热塑性弹性体动态硫化技术与设备研制开发出来,促进我国TPV技术水平的提高。
四、结语
我国必须根据自身的实际情况来发展高分子材料成型加工技术及设备,把握技术前沿,不断地培育自主知识产权,从而使得我国高分子材料成型技术及其产业发展不断加快。
参考文献:
[1] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(下)[J]. 橡塑技术与装备, 2006, (06) :13-18
[2] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(上)[J]. 橡塑技术与装备, 2006, (05) :17-27
[3] 王玉东, 付鹏, 李晓光, 赵清香, 刘民英. 尼龙612等温结晶的球晶形态与生成条件[J]. 高分子材料科学与工程, 2009, (09):76-79
[4] 吴刚. 高分子材料成型加工技术的进展[J]. 广东化工, 2008, (09) :8-12
生物医用高分子材料摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。关键词:功能高分子材料,生物医用高分子材料。功能高分子材料功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。 功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变; 4、耐生物老化,在人体内材料长期性能无变化; 5、耐煮沸,灭菌、药液消毒等处理方法; 6、材料来源广、易于加工成型。 经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。 生物医用高分子材料的现状和发展趋势生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,即biomedical polymeric materials ,生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。 随后,美国、日本、欧洲等工业发达国家不断有文章报道,有些并已在临床上得到应用。 我国研究历史较短,上世纪70年代开始进行人工器官的研制,并有部分器官进入临床应用。1980 年成立了中国生物医疗工程学会,并于1982 年又成立了中国医学工程学会人工脏器及生物材料专业委员会,使得生物医学器材获得进一步发展. 生物医用高分子材料作为一门边缘科学,融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识,还涉及许多工程学问题。生物医用高分子材料的发展,对于战胜危害人类的疾病,保障人民身体健康,探索人类生命奥秘具有重大意义。1 生物医用高分子材料的基本要求及生物相容性对于生物医用高分子材料来说,除了要有医疗功能外,还必须强调安全性,即不仅要治病,而且对人体健康无害。 当然,对生物医用高分子材料的要求也不是一律不变的,可因其使用环境或功能的不同而异,如外用医疗材料与肌体接触时间短,要求可稍低,而与血液直接接触,或体内使用的材料则要求较高。2 生物医用高分子材料的种类及发展生物医用高分子材料按性质可分为非降解和可生物降解两大类。非生物降解的生物医用高分子包括:聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等,其在生理环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的力学性能。可生物降解的生物医用高分子材料则包括胶原、脂肪族聚酯、聚氨基酸、聚己内酯等,这些材料能在生理环境中发生结构性破坏,且降解产物能通过正常的新陈代谢被基体吸收或排出体外。非降解和可生物降解生物医用高分子材料在生物医学领域各具有自己独特的发展地位,然而,随着生物医学和材料科学的发展,人们对生物医用高分子材料提出了更高的要求,可生物降解生物医用高分子材料越来越得到人们的亲睐。因此,在这里主要讨论可生物降解医用高分子材料的种类。根据来源来划分,可生物降解医用高分子材料可分为天然可生物降解和合成可生物降解两大类。3 生物医用高分子材料的应用及展望生物技术将是21世纪最有前途的技术, 生物医用高分子材料将在其中扮演重要角色, 其性能将不断提高, 应用领域也将进一步拓宽。生物医用高分子材料应用主要有以下几个方面:(1)与血液接触的高分子材料。与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料, 要求这种材料要有良好的抗凝血性、抗细菌粘附性, 即在材料表面不产生血栓、不引起血小板变形, 不发生以生物材料为中心的感染。此外, 还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。(2)组织工程用高分子材料。组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构- 功能关系, 以及研制生物代用品以恢复、维持或改善其功能的一门科学。细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究, 使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。(3)药用高分子材料。与低分子药物相比,药用高分子具有低毒、高效、缓释、长效、可定点释放等优点。根据药用高分子结构与制剂的形式, 药用高分子可分为三类: a. 具有药理活性的高分子药物,它们本身具有药理作用,断链后即失去药性, 是真正意义上的高分子药物。b.低分子药物的高分子化。低分子药物在体内新陈代谢速度快, 半衰期短, 体内浓度降低快, 从而影响疗效, 故需大剂量频繁进药, 而过高的药剂浓度又会加重副作用, 此外, 低分子药物也缺乏进入人体部位的选择性。将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。C.药用高分子微胶囊,即将细微的药粒用高分子膜包覆起来形成微小的胶囊,其作用有:延缓、控制释放药物, 提高疗效; 掩蔽药物的毒性、刺激性和苦味等不良性质, 减小对人体的刺激; 使药物与空气隔离, 防止药物在存放过程中的氧化、吸潮等不良反应, 增加贮存的稳定性。(4)医药包装用高分子材料。用于药物包装的高分子材料正逐年增加,包装药物的高分子材料大体上可分为软、硬两种类型。硬型材料如聚酯、聚苯乙烯、聚碳酸酯等, 由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器, 制造饮片和胶囊等固体制剂的包装。新型聚酯聚萘二甲酸乙二醇酯除具有优异的力学性能及阻隔性能外, 还有较强的耐紫外线性, 可用于口服液、糖浆等的热封装。软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯- 醋酸乙烯共聚物等, 常加工成复合薄膜, 主要用来包装固体冲剂、片剂等药物。而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。至于药膏、洗剂、酊剂等外用药液的包装, 则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。(5)隐形眼镜是最常见的眼科用高分子材料制品。对这类材料的基本要求是: ①具有优良的光学性质, 折光率与角膜相接近;②良好的润湿性和透氧性; ③生物惰性, 即耐降解且不与接触面发生化学反应; ④有一定的力学强度, 易于精加工及抗污渍沉淀等。常用的隐形眼镜材料有聚甲基丙烯酸β-羟乙酯, 聚甲基丙烯酸β- 羟乙酯- N - 乙烯吡咯烷酮, 聚甲基丙烯酸β- 羟乙酯- 甲基丙烯酸戊酯, 聚甲基丙烯酸甘油酯- N - 乙烯吡咯烷酮等。浙江工业大学的邬润德等研究的聚钛硅氧烷化合物, 由于在聚合体系中加入了钛烷氧化物交联剂,使材料的致密性增加, 减少了固化收缩, 制备了一种优良的隐形眼镜材料。此外, 发生病变的角膜和晶状体也可用人工角膜和人工晶状体替代。人工角膜可用硅橡胶、聚甲基丙烯酸酯类或聚酯等薄膜制备。人工晶状体的主体材料可用聚甲基丙烯酸酯类, 其起固定作用的附加爪状细枝可用甲基丙烯酸甲酯和甲基丙烯酸丁酯的共聚物或甲基丙烯酸环己酯和甲基丙烯酸丁酯的共聚物等。(6)医用粘合剂与缝合线。生物医用粘合剂是指将组织粘合起来的组织粘合剂, 它们除了应具备一般软组织植入物所应有的条件外, 还应满足下列要求: ①在活体能承受的条件下固化, 使组织粘合; ②能迅速聚合而没有过量的热和毒副产物产生; ③在创伤愈合时粘合剂可被吸收而不干扰正常的愈合过程。常用的粘合剂有α- 氰基丙烯酸烷基酯类, 甲基丙烯酸甲酯- 苯乙烯共聚物及亚甲基丙二酸甲基烯丙基酯等。手术用缝合线可分为非吸收型和可吸收型两大类。非吸收类包括天然纤维(如蚕丝、木棉、麻及马毛等) 和合成纤维(如PET、PA、PP、PE 单丝、PTFE 及PU 等) 。可吸收类包括天然高分子材料(如羊肠线、骨胶原、纤维蛋白等) 和合成高分子材料(如聚乙烯醇、聚羟乙基丁酸酯、聚乳酸、聚氨基酸及聚羟基乙酸等) 。其中, 由聚乳酸和聚羟基乙酸或两者的共聚物制成的缝合线因性能优越而倍受关注。这种缝合线强度可靠, 对创口缝合能力强, 又可生物降解而被肌体吸收, 是一种理想的医用缝合线。(7)医疗器件用高分子材料。高分子材料制的医疗器件有一次性医疗用品 (注射器、输液器、检查器具、护理用具、麻醉及手术室用具等) 、血袋、尿袋及矫形材料等。一次性医疗用品多采用常见高分子材料如聚丙烯和聚4-甲基- 1 - 戊烯制造。血袋一般由软PVC 或LDPE 制成。由PU 制的绷带固化速度快, 质轻层薄, 不易使皮肤发炎, 可取代传统的固定材料———石膏用于骨折固定。硅橡胶、聚酯、聚四氟乙烯、聚酸酐及聚乙烯醇等都是性能良好的矫形材料,已广泛用于假肢制造及整形外科等领域。医用高分子材料的发展方向主要包括:(1)可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视, 无论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。(2)1906 年En rililich 首次提出药物选择性地分布于病变部位以降低其对正常组织的毒副作用, 使病变组织的药物浓度增大, 从而提高药物利用率这一靶向给药的概念。此后一个世纪以来, 靶向药物的载体材料一直吸引了医药工作者的兴趣。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。(3)任何一种材料都是通过其表面与环境介质相接触的, 因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱, 但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等) 的改变在极短时间内发生相应的变化, 从而造成表面性质的改变, 此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。(4)随着科学的发展,由高分子材料制成的人工脏器正在从体外使用型向内植型发展,为满足医用功能性、生物相容性的要求,把酶和生物细胞固定在合成高分子材料上,从而制成各种脏器,将使生物医用高分子材料发展前景越来越广阔。(5)通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难, 因此,可利用与天然聚合物杂化的方法来达到上述目的, 同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的, 必将成为医用生物高分子材料发展的一个主要趋势。 给我分吧,我找得苦。
o()^))o 唉 不会额
在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱.高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出来.这样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1 万以上, 或几百万至千万以上, 所以, 人们将其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶(未加工之前称为树脂).面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国.现有的高分子材料已具有很高的强度和韧性, 足以和金属材料相媲美, 我们日用的家用器械、家具、洗衣机、冰箱、电视机、交通工具、住宅等, 大部分的金属构造已被高分子材料所代替.工业、农业、交通以及高科技的发展, 要求高分子材料具有更高的强度、硬度、韧性、耐温、耐磨、耐油、耐折等特性, 这些都是高分子材料要解决的重大问题.从理论上推算, 高分子材料的强度还有很大的潜力.在提高高分子的性能方面, 最重要的还是制成复合材料第一代复合材料是玻璃钢, 是以玻璃纤维和合成树脂为粘合剂制成.它具有重量轻、强度高、耐高温、耐腐蚀、导热系数低、易於加工等优良性能, 用於火箭、导弹、船只和汽车躯体及电视天线之中.其后, 人们把玻璃纤维换成碳纤维, 其重量更轻, 强度比钢要高3~5 倍, 这就是第二代的复合材料.如果改用芳纶纤维, 其强度更高, 为钢丝的5 倍.高性能的高分子材料的开拓和创新尚有极大的潜力.科学家预测, 21 世纪初, 每年必须比目前多生产1500~2000 万吨纤维材料才能满足需要, 所以必须生产大量的合成纤维材料, 而且要具有更轻型、耐火、阻燃、防臭、吸水、杀菌等特性.有许多新型纤维, 如轻型空腔纤维、泡沫纤维、各种截面形状的纤维、多组份纤维材料等纷纷被研制出来, 人们可指望会有耐静电、耐脏、耐油, 甚至不会沾灰的纤维材料问世.这些纤维材料将用於宇航天线、宇航反射器、心脏瓣膜和人体大动脉.高分子功能材料, 在高分子王国里是一片百花争艳的盛景.由於高分子的功能团能够替代, 所以只要采用极为简便的方法, 就可以制造各种各样的高分子功能材料.常用的吸水性材料, 如棉花、海绵, 其吸水能力只有本身重量的20 倍, 在挤压时, 已吸收的大部分水将被挤出来.而用淀粉和丙烯腈制成的高分子吸水材料, 它不仅能吸收自身重量数百倍到上千倍的水, 而且受到挤压也不会挤出水来.人们可以期望, 将高吸水性的高分子材料制成能将化学能转变成机械能的装置, 以及具有类似於肌肉的功能或制造测量仪器.在微电子工业的光刻集成块工艺, 常用的光刻胶(又称光致抗蚀材料), 就是能使高分子相连接一种功能团, 光照射时会起化学反应, 使其溶解度降低或提高.应用这种光刻胶制备集成块, 可以使集成块的线宽达到0.1 到0.01 微米(1p毫米), 只有用其他工艺制成的集成块的线宽的1/10 到1/100, 是适合於21 世纪的电子计算机的主要元件mm微细元件的开关.光刻胶并能用於各种精细加工, 如半导体元件, EP 刷线路板, 金属板膜或表面的精细加工、玻璃、陶瓷的精细刻蚀、精密机械零件加工等.高分子功能材料应用在信息工程方面, 已经生产了光电导摄影材料、光信息记录材料、光mm能转换材料, 并都已进入实用阶段.像"当代摩西神树"的离子交换树脂的高分子功能材料也发展很快, 许多高分子离子交换膜、高分子反渗透膜、高分子气体分离膜、高分子透过蒸气膜等都在化学工艺的筛分、沉淀、过滤、蒸馏、结晶、萃取、吸附等过程中获得应 用, 而且分离结果优於其他方法, 可节约大量能量.日本的制盐工业早已用离子交换膜去代替盐田和电解食盐工艺.利用反渗透膜对有机化工、酿造工业的三废进行处理, 可回收胺、酯、醇、醚、酮、酚等重要有机化合物.气体分离膜对不同气体的透过率和选择性不同, 可以利用这一性质从混合气体中选择分离某种气体, 如从空气中富集氧, 从合成氨中回收氢, 从天然气中收集氦, 还可以制备一种水下呼吸器(人工鳃), 它是直接从海水中提取氧的潜水装置, 人类可望能长期生活在海水中, 进入海龙王的宫殿, 分享海龙王海底宁静的幸福生活的梦想可变成现实.还有各种信息转换膜、反应控制膜、能量输送膜等正在研制阶段.一种富有吸引力的生物膜也正在研究之中.生 物膜具有奇特的性能, 不仅能主动起能量、信息、物质的传递作用, 还能参加光合作用及有机物质的生命合成等生命活动.这就是21 世纪的高科技的一颗明珠, 摘取这颗明珠需要有极大的勇气和百折不挠的精神.高分子功能材料的另一极为重要的发展就是用於催促化学反应, 这类高分子功能材料被称为高分子催化剂.早在本世纪40 年代, 人们已经使用一种叫交联磺化聚苯乙烯的离子交换树脂作催化剂, 用於化学反应的各个过程, 如水解、缩合、聚合等.尔后, 这类高分子功能材料发展很快, 高分子金属络合物催化剂接着问世, 它能够在化学反应中加速捕捉金属离子, 实现金属化合物的迅速分离, 在工业生产和工业分析上是一种十分重要的方法.还有高分子金属催化剂, 是促进化合物中金属离子迅速完成化学反应的材料, 它已获得了成功的应用.自然界存在一种最有效的催化剂, 称为酶.这一类高分子材料像酶一样有很强的催化作用, 称为人工合成酶.酶是由氨基酸组成的蛋白质高分子化合物, 它是生物体内各种生物化学反应的高效催化剂, 是性能最优异的天然的高分子功能材料.现在, 各种人工合成酶已经研制成功并逐步投入应用, 其种类越来越多, 科学家根据酶的作用原理试图模仿应用於化学工业的催化剂, 在化学工业上进行一场革命.它可以制作进行化工生产, 可以充分利用再生的生物资源, 以摆脱传统的以石油系列为主要原料的合成工艺, 而且还可用酶的催化原理, 避开传统的合成工艺中的高温, 高压的条件, 在各种物质混合的状态下, 有选择地使特定物质发生化学反应, 使反应物能够不加分离地连续反应至生产出最终产物.这样, 生物反应器将会改变化工企业高塔林立的传统面貌, 不仅能节约能源, 改善工作环境, 同进还可以广开化工资源, 消灭废水、废气和废料(又称三废), 使建立无污染的理想化学工业成为可能.例如天门冬酰胺酶制成的中性树脂的前景就非常光明.高分子材料在医学和生命科学上的应用已有很长的历史, 但是依靠着高科技的进步, 近期来这个领域的发展令人惊讶, 人工心脏瓣膜、人工肺、人工肾、人工血管、人造血液、人工皮肤、人工骨骼、人工关节, 从研制迅速成功到不断完善, 并且已付诸使用.高分子材料制作的手术器械、医护用品已不计其数.高分子材料生物化的最大特色就是控制人的健康和生命, 利用不带药剂性的高分子与其他药剂合成的高分子药剂, 可大大改善治疗效果, 这一类药剂人体易於吸收, 毒性和副作用小.如引起恶心、全身不适等不良反应的抗癌药, 把它们高分子化, 其效果就大大改善, 像抗癌药芳庚酚酮和甲基丙烯酸结合为高分子, 其效果更佳.另一类高分子药物, 本身就有很高的药效, 如合成的聚乙烯吡咯烷酮, 就可以作为血浆的代用品.商品化的聚醚与聚氨酯合成的高分子药物与血浆蛋白质中的白蛋白的亲和力特别高, 相处很融洽, 是一种解决人体血凝的医用高分子材料.纵观上述, 高分子已经成为21 世纪材料科学中强有力的支柱, 高分子材料的发展在21 世纪将会取得更大的成就
117 浏览 2 回答
224 浏览 3 回答
194 浏览 3 回答
193 浏览 3 回答
186 浏览 4 回答
190 浏览 4 回答
264 浏览 4 回答
99 浏览 3 回答
288 浏览 2 回答
177 浏览 4 回答
353 浏览 4 回答
315 浏览 4 回答
336 浏览 4 回答
82 浏览 3 回答
345 浏览 3 回答