4.1.1 异常地层压力及其形成机理
地层孔隙压力(简称地层压力)的形成,与地层的沉积条件、构造运动、地下水的活动、矿物成分的变化以及地下发生的物理化学过程等因素密切相关。地层压力的形成机理主要包括静水压力的作用、圈闭与压实作用、矿物成分的改变和渗透作用。
由于压实作用主要发生在铅直方向,从力学角度讲,控制压实过程的力实际上是铅直有效应力。孔隙度的变化、孔隙流体高压的形成等过程都与铅直有效应力的变化有关。正常压力环境中,由于沉积颗粒之间的相互接触,岩石基体支撑着上覆岩层载荷,地层压力等于静液压力;而沉积颗粒间铅直有效应力的任何减少,都将使孔隙内流体支撑部分上覆岩层载荷,形成异常高压。
异常高压的成因条件多种多样,一种异常高压现象可能是由多种相互叠加的因素所致,其中包括地质的、物理的、地球化学和动力学的因素。但就一个特定异常高压而言,其成因可能以某一种因素为主,其他因素为辅。
(1)不平衡压实作用
在埋深和压实过程中,流体在机械力的作用下从沉积物中排出,地层被压实。沉积物压实的过程主要受4个方面的因素控制:①沉积速率;②孔隙空间减少速率;③地层渗透率的大小;④流体排除情况。其中最主要的是沉积速率。
若4个方面的因素保持很好的平衡(比如沉积较慢,沉积速率小于排水速率),随着埋深的增加,沉积层有足够的排水时间,沉积颗粒承担了全部的上覆沉积物的载荷,使沉积颗粒排列的更加紧密,于是随着埋深增加,孔隙度很快降低,地层孔隙压力为静压力。这种情况称为平衡压实过程,形成正常压实地层。平衡压实过程中,由于压实与沉积速率及排水速率保持很好的平衡关系,随埋深增加,孔隙度减小,地层密度增加。但是压实情况随深度的变化是不均匀的,开始时较快,以后逐渐减慢,因此孔隙度随埋深的变化不是线性的。
平衡压实地层的孔隙压力为静液压力系统,可以设想为一个动力学开放的地质环境,即可渗透的流体连通的地质环境。在这种开放的地质环境中,排出的流体总是沿着最小阻力的方向流动,或向上流动或向着低压高渗透方向流动。
若某个或某几个因素受到制约,排水能力减弱或停止,继续增加的上覆沉积载荷部分或全部由孔隙流体承担,沉积物进一步压实所需的有效载荷(垂直有效应力)减小或不变,出现地层欠压实及异常高压地层。这种情况称为不平衡压实过程。
快速沉积是造成不平衡压实的主要原因之一,由于沉积速率过快,造成沉积颗粒排列不规则(没有足够的时间),孔隙性变差,排水能力减弱,继续增加的上覆沉积载荷部分或全部由孔隙流体承担,形成异常高压,同时减缓了沉积物的进一步压实,造成地层的欠压实。另外一种常见的欠压实情况是一非渗透致密盖层的快速沉积导致其下地层的欠压实与异常高压,最为典型的例子是“复合盐层”中与盐层伴生的软泥岩地层。
产生不平衡压实应具备如下条件:①巨大的沉积物总厚度;②厚层黏土的存在;③形成互层砂岩;④快速堆积加载;⑤在许多地区,欠压实多发生在海退层序中,而其中快速沉积是最主要的因素。
(2)构造挤压
在构造变形地区,由于地层的剧烈升降,产生构造挤压应力,如果正常的排水速率跟不上附加压力(构造挤压力)所产生的附件压实作用,将会引起地层孔隙压力增加,产生异常高压。在某些情况下,断层可能起着流体通道作用,但在另外一些情况下,却可能起到封闭作用,而引起异常高压。所以,同样是断块盆地,有的可能是异常高压层,有的可能不是。
(3)水热增压
随着埋深增加,地层温度不断升高,由于水的热膨胀系数大于岩石的热膨胀系数,孔隙流体体积增加,如果孔隙水由于存在流体隔层而无法逸出,孔隙压力升高。
(4)生烃作用
在逐渐埋深期间,将有机物转化成烃的反应也产生流体体积的增加,从而产生异常高压。许多研究表明,与烃类生成有关的异常高压产生的地层破裂是烃类从烃源岩中运移出来进入高渗透储集岩的机制,尤其是甲烷的生成已在许多储集层中被引为超压产生的原因。当烃源岩中的有机质或进入储集层中的油转变成甲烷时,引起相当大的体积增加。在良好的封闭条件下,这些体积的增加能产生很强的超高压。烃源岩生气造成的压力很大,足以使气体进入毛细管力很大的岩石中,并且在此过程中驱替出水,甚至在阻碍流体的隔层存在的条件下也能流动。在有效封闭存在的地方,不断产生的甲烷能将压力提高到超过封闭层的破裂压力,从而使封闭层破裂并导致流体的渗漏。甲烷的生成对异常压力的产生是一个潜在的高效机制,尤其是在与烃源岩有密切联系的岩石中。连续的甲烷生成能产生如此巨大的压力以至于封闭层不能永久存在,它们要么连续地渗漏,要么周期性地发生破裂和渗漏。然而,即使封闭层被突破,但在达到常压之前,封闭层将有可能“愈合”(破裂闭合),因此,依然存在异常高压,只是低于渗漏之前的超压而已。另一方面,烃类生成使地下单相流渗流体系转变成多相流渗流体系,大大降低了流体的相渗流率,减缓了流体排出系统的速度,同样能引起压力的增加。
(5)蒙脱石脱水作用
沉积下来的蒙脱石颗粒不断吸附粒间自由水,直至结构晶格膨胀到最大为止,吸附水成为黏土层间束缚水。随埋深增加,温度逐渐升高。当地温达到约123℃时,黏土结构晶格开始破裂,蒙脱石的层间束缚水被排出变为自由水,该过程称为蒙脱石的脱水过程,相应的埋深称为蒙脱石的脱水深度。释放到孔隙中的束缚水因发生膨胀,体积远远超过晶格破坏所减少的体积,使孔隙中自由水的体积大量增加。若排水畅通,地层孔隙压力为静液压力,若有足够的上覆岩层载荷,则地层进一步压实。如果地层是封闭的,增加的流体向外排出受到阻碍,将产生高于静液压力的地层孔隙压力。在这个过程中,如果存在钾离子,这个作用就是蒙脱石向伊利石的转化作用。这一机制也被认为能产生阻碍流体流动的隔层,因为伊利石比蒙脱石更致密。
若地层非封闭,将会导致正常地层孔隙压力,若此时的上覆沉积载荷较小,不足以将岩石进一步压实到正常压实的程度,地层尚保留了较高的孔隙度。在我国许多古近-新近系地层存在这种现象,如南海的莺琼海盆地,有研究者将这样的地层称为“速度稳定段”。
(6)浓差作用
浓差作用是盐度较低的水体通过半透隔膜向盐度较高水体的物质迁移。只要黏土或页岩两侧的盐浓度有明显的差别,黏土或页岩便起着半渗透膜的作用,产生渗透压力。渗透压差与浓度成正比,浓度差越大,渗透压差也越大。黏土沉积物越纯,其渗透作用就越强。浓差流动可以在一个封闭区内产生高压。如果一个封闭区内部的孔隙水比周围孔隙水的含盐度高,浓差流动方向指向封闭区内,致使区内压力升高。浓差作用引起的异常高压远比压实作用和水热作用引起的异常高压小得多,例如,当NaCl含量差为50000mg/L时,渗透压差大约只有4MPa。
4.1.2 地层压力的确定方法
确定地层压力的方法有很多种,由于地下情况的复杂性,到目前为止,没有一种预测方法是唯一可信的。但由于地层压力问题的重要性及严重性,围绕着解决地层压力问题仍然不惜投入大量的人力、物力、财力,包括各种从简单到极其复杂的仪器设备。
按与钻井过程的先后关系,地层压力的确定方法分为四大类(高德利,2004):
(1)钻前预测方法(Prediction of pore pressure)
主要是利用地震层速度资料,并根据它与地层孔隙压力的关系计算出地层孔隙压力。其预测精度主要取决于地震资料的质量、对地质分层及岩性的了解程度以及计算模型的合理性。常用的方法有“直接计算法”和“等效深度法”。
(2)随钻监测方法(Detection of pore pressure)
主要是利用钻孔过程中测量到的随钻信息资料实时监测异常压力带并确定其值。过去常用的有dc指数法、σ法、标准化钻速法、泥页岩密度法。近几年随着石油钻井技术的进步,相继出现了随钻测井(LWD)资料法、随钻地震(SWD)资料法等。
(3)钻后测井检验方法(Evaluation of pore pressure)
利用钻后测井资料评估地层孔隙压力,这是公认的最可靠的方法,精度较高。常用的有泥页岩声波时差法、泥页岩电阻率(电导率)法、泥页岩密度法等。
(4)实测法
通过一定仪器直接测量地层孔隙压力,是最准确的一种方法。常用的方法有:钻杆测试法(DSTS)、重复地层测试法(RFT)、多层位测试器(FMT)测试法等。