沪深300指数是沪深证券交易所于2005年4月8日联合发布的反映A股市场整体走势的指数。沪深300指数编制目标是反映中国证券市场股票价格变动的概貌和运行状况,并能够作为投资业绩的评价标准,为指数化投资和指数衍生产品创新提供基础条件。沪深300指数,简称:沪深300;是由中证指数有限公司(China Securities Index Co., Ltd)编制,中证指数有限公司成立于2005年8月25日,是由上海证券交易所和深圳证券交易所共同出资发起设立的一家专业从事证券指数及指数衍生产品开发服务的公司。 沪深300指数是沪深证券交易所于2005年4月8日联合发布的反映A股市场整体走势的指数。沪深300指数编制目标是反映中国证券市场股票价格变动的概貌和运行状况,并能够作为投资业绩的评价标准,为指数化投资和指数衍生产品创新提供基础条件。中证指数有限公司成立后,沪深证券交易所将沪深300指数的经营管理及相关权益转移至中证指数有限公司。中证指数有限公司同时计算并发布沪深300的价格指数和全收益指数,其中价格指数实时发布,全收益指数每日收盘后在中证指数公司网站和上海证券交易所网站上发布。 沪深300指数市场走势沪深300指数样本覆盖了沪深市场70%左右的市值,具有良好的市场代表性和可投资性。截止到2006年8月31日,已有2只指数基金使用沪深300指数作为投资标的,有10只基金使用沪深300指数作为业绩衡量基准。中证指数有限公司已授权中银国际英国保诚资产管理公司使用沪深300指数开发境外ETF,以及路透资讯利用沪深300指数开发路透中国年金指数。它的推出,丰富了市场现有的指数体系,增加了一项用于观察市场走势的指标,也进一步为指数投资产品的创新和发展提供了基础条件,十分有利于投资者全面把握我国股票市场总体运行状况。 一、沪深300指数是以2004年12月31日为基期,基点为1000点,其计算是以调整股本为权重,采用派许加权综合价格指数公式进行计算。其中,调整股本根据分级靠档方法获得。 二、凡有成份股分红派息,指数不予调整,任其自然回落。 三、沪深300指数会对成分股进行定期调整,其调整原则为: 1、指数成份股原则上每半年调整一次,一般为1月初和7月初实施调整,调整方案提前两周公布。 2、 每次调整的比例不超过10%。样本调整设置缓冲区,排名在240名内的新样本优先进入,排名在360名之前的老样本优先保留。 3、 最近一次财务报告亏损的股票原则上不进入新选样本,除非该股票影响指数的代表性。 由于沪深300指数覆盖了沪深两个证券市场,具有很好的总体市场代表性,因此在我国股指期货标的指数选择上呼声最高,很有可能成为中国股指期货的标的物。 指数代码: 沪市000300 深市399300。 沪深300指数以2004年12月31日为基日,基日点位1000点。 沪深300指数是由上海和深圳证券市场中选取300只A股作为样本,其中沪市有179只,深市121只。 样本选择标准为规模大、流动性好的股票。 沪深300指数样本覆盖了沪深市场六成左右的市值,具有良好的市场代表性。编辑本段诞生过程 1998年启动——2001年上交所首先研究方案——证监会协调沪深交易所共同开发——2003年达成共识——细节设计——2005年4月8日正式推出。编辑本段沪深300指数问答 沪深证券交易所指数工作小组有关负责人就4月8日正式发布的沪深300指数,回答了记者的提问。 沪深300指数问:为何要发布沪深300指数? 答:沪深两个市场各自均有独立的综合指数和成份指数,这些指数在投资者中有较高的认同度,但市场缺乏反映沪深市场整体走势的跨市场指数。沪深300指数的推出切合了市场需求,适应了投资者结构的变化,为市场增加了一项用于观察市场走势的指标,也进一步为市场产品创新提供了条件。 问:与沪深市场现有指数相比,沪深300指数有何特点? 答:现在市场中的股票指数,无论是综合指数,还是成份股指数,只是分别表征了两个市场各自的行情走势,都不具有反映沪深两个市场整体走势的能力。沪深300指数则是反映沪深两个市场整体走势的“晴雨表”。指数样本选自沪深两个证券市场,覆盖了大部分流通市值。成份股为市场中市场代表性好,流动性高,交易活跃的主流投资股票,能够反映市场主流投资的收益情况。 问:沪深300指数的市场代表性如何? 答:沪深300指数的市场代表性表现在市值覆盖率高、与现有市场指数相关性高、样本股集中了市场中大量优质股票等方面。 沪深300指数样本覆盖了沪深市场六成左右的市值,具有良好的市场代表性。截至2005年3月末,指数总市值21817亿元,占沪深市场比例达64.55%,流通市值5934亿元,占沪深市场比例达58.29%。 指数试运行结果显示,沪深300指数走势强于上证综合指数和深证综合指数,并且沪深300指数与上证180指数及深证100指数之间的相关性高,日相关系数分别达到99.7%和99.22%,表明沪深300指数能够充分代表沪深市场股价变动情况。 在沪深300指数的样本股选取上,剔除了ST股票、股价波动异常或者有重大违规行为的公司股票,集中了一批质地较好的公司。这些公司的净利润总额占市场净利润总额的比例达到83.55%,平均市盈率和市净率水平低于市场整体水平,是市场中主流投资的目标。因此,沪深300指数能够反映沪深市场主流投资的动向。 问:沪深300指数采用了哪些指数编制方面的技术? 答:沪深300指数在编制方面主要采用了目前流行的分级靠档技术和缓冲区技术。分级靠档技术的采用可以使在样本公司股本发生微小变动时保持用于指数计算的样本公司股本数的稳定,可以降低股本变动频繁带来跟踪投资成本,便于投资者进行跟踪投资。同样,缓冲区技术的采用使每次指数样本定期调整的幅度得到一定程度的控制,使指数能够保持良好的连续性。样本股调整幅度的降低可以降低投资者跟踪投资指数的成本。 问:与市场中其它跨市场指数相比,沪深300指数有什么优势? 答:其一,沪深证券交易所在指数编制和发布方面拥有丰富的历史经验,于上个世纪90年代初就推出了国内市场上最早的指数。沪深300指数是在进一步借鉴国际指数编制技术的基础上形成的成果。 其二,沪深证券交易所拥有关于上市公司及市场交易主体第一手的监管信息,在样本选取上充分利用这些信息,严格筛选股票,能够最大程度上降低样本股票的风险。 其三,沪深300指数通过沪深两个证券交易所的卫星行情系统进行实时发布,这是交易所以外的其它指数编制机构无法获得的技术条件。此外,交易所积极支持利用沪深300指数进行的指数产品创新,以形成在交易所上市交易的创新产品。 问:沪深300指数对广大投资者有何益处? 答:沪深300指数具有作为表征市场股票价格波动情况的价格揭示功能,是反映市场整体走势的又一重要指标。这一指数推出后,为投资者提供了衡量自己证券投资收益情况的基本尺度。在此基础上,市场中将会推出以沪深300指数为跟踪目标的指数基金产品,这将为中小投资者提供分散化投资的通道,也扩大了市场中机构投资者的阵容。 问:沪深300指数推出后会立即推出股指期货吗? 答:股票指数是股票指数期货的基础,但沪深300指数的推出并不意味着立即会推出股指期货。从国际经验来看,指数期货的推出需要选择具有一定历史的指数作为标的,沪深300指数还需要在一段时间内受到市场检验。另外,股指期货的推出还需要特定的市场环境和适合的时机。因此不能够将沪深300指数的推出与推出股指期货简单地联系在一起。 问:沪深300指数推出的历程如何? 答:沪深证券交易所早在1998年开始就着手进行跨市场指数的研究工作,同期市场中多个中介机构也对跨市场指数进行了有益的探索。在此期间,沪深证券交易所都成立了研究跨市场指数的专门小组,对国内外主要指数的编制方法及其特点进行了详细的研究和借鉴,经历了两年多时间,初步形成了结合国内市场的特点的跨市场指数编制思路。 2001年至2003年中期,沪深证券交易所就指数编制方案、指数计算与发布、指数的管理等方面问题等问题进行了充分交流,达成了联合编制和发布沪深300指数的共识。 其后,沪深证券交易所成立了编制跨市场指数的指数联合工作小组,着手进行跨市场指数的设计工作。指数工作小组在结合双方指数编制经验的基础上,就指数选样规则、样本调整方法、计算方法等技术问题进行了反复研究、比较和论证,最终在共同努力下,设计完成了既借鉴国际先进经验又结合国内实际情况的沪深300指数。 在此期间,指数工作小组还就指数计算和发布的技术问题进行探讨,于2004年初开始进行指数试运行。2004年以来,由沪深证券交易所分别进行每半年轮流担当主计算方和主发布方,指数样本也按照每半年一次调整的原则进行了2次样本调整。现在,推出沪深300指数的时机已经成熟,沪深证券交易所联合向市场正式推出沪深300指数。 问:如何获得沪深300指数的使用授权? 答:沪深300指数是上海证券交易所和深圳证券交易所联合共同推出的指数,是双方共同拥有的成果。机构投资者如需对沪深300指数进行商业运用,需要取得沪深证券交易所的认可,经签署授权协议后使用。交易所积极支持以沪深300指数为基础的指数产品开发,并努力创造条件,进一步拓宽指数产品发展的空间。编辑本段编制方法 沪深300指数的编制目标是反映中国证券市场股票价格变动的概貌和运行状况,并能够作为投资业绩的评价标准,为指数化投资及指数衍生产品创新提供基础条件。 指数成份股的选样空间:上市交易时间超过一个季度,除非该股票上市以来日均A股总市值在全部沪深A股中排在前30位;非ST、*ST股票,非暂停上市股票;公司经营状况良好,最近一年无重大违法违规事件、财务报告无重大问题;股票价格无明显的异常波动或市场操纵;剔除其他经专家认定不能进入指数的股票。选样标准为选取规模大、流动性好的股票作为样本股。 沪深300指数的选样方法是对样本空间股票在最近一年(新股为上市以来)的日均成交金额由高到低排名,剔除排名后50%的股票,然后对剩余股票按照日均总市值由高到低进行排名,选取排名在前300名的股票作为样本股。 沪深300指数依据样本稳定性和动态跟踪相结合的原则,每半年调整一次成份股,每次调整比例一般不超过10%。样本调整设置缓冲区,排名在240名内的新样本优先进入,排名在360名之前的老样本优先保留。当样本股公司退市时,自退市日起,从指数样本中剔除,由过去最近一次指数定期调整时的候选样本中排名最高的尚未调入指数的股票替代。 指数以调整股本为权重,采用派许加权综合价格指数公式进行计算。其中,调整股本根据分级靠档方法获得。例如,某股票流通股比例(流通股本/总股本)为7%,低于20%,则采用流通股本为权数;某股票流通比例为35%,落在区间(30,40)内,对应的加权比例为40%,则将总股本的40%作为权数。
doc.88有很多,看看~
摘 要 研究了沪深300指数日收益率时间序列,经检验其具有马氏性,并建立了马尔可夫链模型。取交易日分时数据,根据分时数据确定状态初始概率分布,通过一步转移概率矩阵对下一交易日的日收益率进行了预测。对该模型分析和计算,得出其为有限状态的不可约、非周期马尔可夫链,求解其平稳分布,从而得到沪深300指数日收益率概率分布。并预测了沪深300指数上涨或下跌的概率,可为投资管理提供参考。关键词 马尔可夫链模型 沪深300指数 日收益率概率分布 平稳分布1 引言沪深300指数于2005年4月正式发布,其成份股为市场中市场代表性好,流动性高,交易活跃的主流投资股票,能够反映市场主流投资的收益情况。众多证券投资基金以沪深300指数为业绩基准,因此对沪深300指数收益情况研究显得尤为重要,可为投资管理提供参考。取沪深300指数交易日收盘价计算日收益率,可按区间将日收益率分为不同的状态,则日收益率时间序列可视为状态的变化序列,从而可以尝试采用马尔可夫链模型进行处理。马尔可夫链模型在证券市场的应用已取得了不少成果。参考文献[1]、[2]、[3]和[4]的研究比较类似,均以上证综合指数的日收盘价为对象,按涨、平和跌划分状态,取得了一定的成果。但只取了40~45个交易日的数据进行分析,历史数据过少且状态划分较为粗糙。参考文献[5]和[6]以上证综合指数周价格为对象,考察指数在的所定义区间(状态)的概率,然其状态偏少(分别只有6个和5个状态),区间跨度较大,所得结果实际参考价值有限。参考文献[7]对单只股票按股票价格划分状态,也取得了一定成果。然而收益率是证券市场研究得更多的对象。本文以沪深300指数日收益率为对考察对象进行深入研究,采用matlab7.1作为计算工具,对较多状态和历史数据进行了处理,得出了沪深300指数日收益率概率分布,并对日收益率的变化进行了预测。2 马尔可夫链模型方法2.1 马尔可夫链的定义设有随机过程{Xt,t∈T},T是离散的时间集合,即T={0,1,2,L},其相应Xt可能取值的全体组成状态空间是离散的状态集I={i0,i1,i2,L},若对于任意的整数t∈T和任意的i0,i1,L,it+1∈I,条件概率则称{Xt,t∈T}为马尔可夫链,简称马氏链。马尔可夫链的马氏性的数学表达式如下:P{Xn+1=in+1|X0=i0,X1=i1,L,Xn=in}=P{Xn+1=in+1|Xn=in} (1)2.2 系统状态概率矩阵估计马尔可夫链模型方法的基本内容之一是系统状态的转移概率矩阵估算。估算系统状态的概率转移矩阵一般有主观概率法和统计估算法两种方法。主观概率法一般是在缺乏历史统计资料或资料不全的情况下使用。本文采用统计估算法,其主要过程如下:假定系统有m种状态S1,S2,L,Sm根据系统的状态转移的历史记录,可得到表1的统计表格。其中nij表示在考察的历史数据范围内系统由状态i一步转移到状态j的次数,以■ij表示系统由状态i一步转移到状态的转移概率估计量,则由表1的历史统计数据得到■ij的估计值和状态的转移概率矩阵P如下:■ij=nij■nik,P=p11 K p1mM O Mpm1 L pmn(2)2.3 马氏性检验随机过程{Xt,t∈T}是否为马尔可夫链关键是检验其马氏性,可采用χ2统计量来检验。其步骤如下:(nij)m×m的第j列之和除以各行各列的总和所得到的值记为■.j,即:■.j=■nij■■nik,且■ij=nij■nik(3)当m较大时,统计量服从自由度为(m-1)2的χ2分布。选定置信度α,查表得χ2α((m-1)2),如果■2>χ2α((m-1)2),则可认为{Xt,t∈T}符合马氏性,否则认为不是马尔可夫链。■2=2■■nijlog■ij■.j(4)2.4 马尔可夫链性质定义了状态空间和状态的转移概率矩阵P,也就构建了马尔可夫链模型。记Pt(0)为初始概率向量,PT(n)为马尔可夫链时刻的绝对概率向量,P(n)为马尔可夫链的n步转移概率矩阵,则有如下定理:P(n)=PnPT(n)=PT(0)P(n)(5)可对马尔可夫链的状态进行分类和状态空间分解,从而考察该马尔可夫链模型的不可约闭集、周期性和遍历性。马尔可夫链的平稳分布有定理不可约、非周期马尔可夫链是正常返的充要条件是存在平稳分布;有限状态的不可约、非周期马尔可夫链必定存在平稳过程。3 马尔可夫链模型方法应用3.1 观测值的描述和状态划分取沪深300指数从2005年1月4日~2007年4月20日共555个交易日收盘价计算日收益率(未考虑分红),将日收益率乘以100并记为Ri,仍称为日收益率。计算公式为:Ri=(Pi-Pi-1)×100/Pi-1(6)其中,Pi为日收盘价。沪深300指数运行比较平稳,在考察的历史数据范围内日收益率有98.38%在[-4.5,4.5]。可将此范围按0.5的间距分为18个区间,将小于-4.5和大于4.5各记1区间,共得到20个区间。根据日收益率所在区间划分为各个状态空间,即可得20个状态(见表2)。3.2 马氏性检验采用χ2统计量检验随机过程{Xt,t∈T}是否具有马氏性。用前述统计估算法得到频率矩阵(nij)20×20。由(3)式和(4)式可得:■.j=■nij■■nik,且■ij=nij■nik,■2=2■■nijlog■ij■.j=446.96,令自由度为k=(m-1)2即k=361,取置信度α=0.01。由于k>45,χ2α(k)不能直接查表获得,当k充分大时,有:χ2α(k)≈■(zα+■)2(7)其中,zα是标准正态分布的上α分位点。查表得z0.01=2.325,故可由(1)、(7)式得,即统计量,随机过程{Xt,t∈T}符合马氏性,所得模型是马尔可夫链模型。3.3 计算转移概率矩阵及状态一步转移由频率矩阵(nij)20×20和(1)、(2)式得转移概率矩阵为P=(Pij)20×20。考察2007年4月20日分时交易数据(9:30~15:30共241个数据),按前述状态划分方法将分时交易数据收益率归于各状态,并记Ci为属于状态i的个数,初始概率向量PT(0)=(p1,p2,L,pt,L,p20),则:pj=Cj/241,j=1,2,K,20(8)下一交易日日收益率分布概率PT(0)={p1(1),p2(1),L,pi(1),L,p20(1)},且有PT(1)-PT(0)p,计算结果如表3所示。3.4 马尔可夫链遍历性和平稳分布可以分析该马尔可夫链的不可约集和周期性,从而进一步考察其平稳分布,然而其分析和求解非常复杂。本文使用matlab7.1采用如下算法进行求解:将一步转移概率矩阵P做乘幂运算,当时Pn+1=Pn停止,若n>5 000亦停止运算,返回Pn和n。计算发现当n=48时达到稳定,即有P(∞)=P(48)=P48。考察矩阵P(48)易知:各行数据都相等,不存在数值为0的行和列,且任意一行的行和为1。故该马尔可夫链{Xt,t∈T}只有一个不可约集,具有遍历性,且存在平稳分布{πj,j∈I},平稳分布为P(48)任意一行。从以上计算和分析亦可知该马尔可夫链是不可约、非周期的马尔可夫链,存在平稳分布。计算所得平稳分布如表4所示。3.5 计算结果分析表3、表4给出了由当日收益率统计出的初始概率向量PT(0),状态一步预测所得绝对概率向量PT(1)和日收益率平稳分布,由表3和表4综合可得图1。可以看出,虽然当日(2007年4月20日)收益率在区间(1.5,4.5)波动且在(2.5,4.5)内的概率达到了0.7261,表明在2007年4月20日,日收益率较高(实际收盘时,日收益率为4.41),但其下一交易日和从长远来看其日收益率概率分布依然可能在每个区间。这是显然的,因为日收益率是随机波动的。对下一交易日收益率预测(PT(1)),发现在下一交易日收益率小于0的概率为0.4729,大于0的概率为0.5271,即下一交易日收益率大于0的概率相对较高,其中在区间(-2,-1.5)、(0.5,1)和(1,1.5)概率0.2675、0.161和0.1091依次排前三位,也说明下一交易日收益率在(-2,-1.5)的概率会比较高,有一定的风险。从日收益率长远情况(平稳分布)来看,其分布类似正态分布但有正的偏度,说明其极具投资潜力。日收益率小于0的概率为0.4107,大于0的概率为0.5893,即日收益率大于0的概率相当的高于其小于0的概率。4 结语采用马尔可夫链模型方法可以依据某一交易日收益率情况向对下一交易日进行预测,也可得到从长远来看其日收益率的概率分布,定量描述了日收益率。通过对沪深300指数日收益率分析和计算,求得沪深300指数日收益率的概率分布,发现沪深300指数日收益率大于0的概率相对较大(从长远看,达到了0.5893,若考虑分红此概率还会变大),长期看来沪深300指数表现乐观。若以沪深300指数构建指数基金再加以调整,可望获得较好的回报。笔者亦采用范围(-5,5)、状态区间间距为1和范围(-6,6)、状态区间间距为2进行运算,其所得结果类似。当采用更大的范围(如-10,10等)和不同的区间大小进行运算,计算发现若状态划分过多,所得模型不易通过马氏性检验,如何更合理的划分状态使得到的结果更精确是下一步的研究之一。在后续的工作中,采用ANN考察所得的日收益率预测和实际日收益率的关系也是重要的研究内容。马尔可夫链模型方法也可对上证指数和深证成指数进行类似分析。参考文献1 关丽娟,赵鸣.沪综指走势的马尔可夫链模型预测[J].山东行政学院,山东省经济管理干部学院学报,2005(4)2 陈奕余.基于马尔可夫链模型的我国股票指数研究[J].商场现代化(学术研讨),2005(2)3 肖泽磊,卢悉早.基于马尔可夫链系统的上证指数探讨[J].科技创业月刊,2005(9)4 边廷亮,张洁.运用马尔可夫链模型预测沪综合指数[J].统计与决策,2004(6)5 侯永建,周浩.证券市场的随机过程方法预测[J].商业研究,2003(2)6 王新蕾.股指马氏性的检验和预测[J].统计与决策,2005(8)7 张宇山,廖芹.马尔可夫链在股市分析中的若干应用[J].华南理工大学学报(自然科学版),2003(7)8 冯文权.经济预测与决策技术[M].武汉:武汉大学出版社,20029 刘次华.随机过程[M].武汉:华中科技大学出版社,200110 盛千聚.概率论与数理统计[M].北京:高等教育出版社.1989转
有微观联系的股票择好期权定价摘要:目前对于择好期权的定价研究,大多没有考虑原生资产收益率之间的微观联系,使得定价结果可能偏离真实价值.基于此考虑,给出了两家具有微观联系的上市公司股票的数学模型,在此模型基础上利用delta对冲推导出择好期权满足的PDE,通过计价单位转换的方法求出择好期权的定价公式,分析了股票间微观联系对择好期权的价格影响.关键词:定价模型;微观联系;择好期权0引言择好期权是多资产期权的一种,其价格取决于多种原生资产价格的变化.股票择好期权的持有人在到期日有权取得股价表现最好的那只股票.例如,某投资人拟投资股票A和股票B,但他无法肯定未来哪一只股票的回报更高.为此他购买一张择好期权,确保在期权到期日能取得两只股票的最佳回报,同时可以规避因只购买一只股票所带来的风险.目前对于择好期权的定价研究,大多只考虑原生资产收益率之间的宏观相关性,而忽视了它们可能存在的微观的相关性,如上市公司之间互相持有股票,其股票价格必定相互影响,呈现齐涨共跌.忽略这种微观的相关性,会使得定价结果可能偏离真实价值.文献[3]给出了n个风险资产Si(i =1,2,…,n)都遵循几何布朗运动,且每个随机元dWi(i =1,2,…,n)互相独立情形下的择好期权的模型和定价公式.该模型并未考虑到股票之间可能存在的微观联系对择好期权价格的影响.基于此考虑,本文作者给出了两家具有微观联系的上市公司的股票的数学模型,同时考虑股票的宏观和微观相关性,并应用于择好期权的定价问题.运用无套利原理推导出两资产择好期权所满足的方程,并给出择好期权的定价公式.1模型的建立股票择好期权定价可看作是满足式(5)所示几何Brown运动下的一般股票择好期权定价.图1取参数S1=10,S2=10,σ1=0.2,σ2=0.2,ε2=0,ρ=0.5,两只股票有相同的初始价格与波动率,图2取参数S1=10,S2=10,σ1=0.2,σ2=0.3,ε2=0,ρ=0.5,第二只股票的波动率高于第一只股票.可以看到随着影响因子ε1的变化,股票择好期权的价格不断变化,但是正如式(15),V受影响因子,股票价格,波动率,以及到期日的共同作用,而非影响因子的单调函数[5].参考文献:[1]BLACK F, SCHOLESM. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81,637-654.[2]姜礼尚,陈亚浙,刘西桓,等.数学物理方程讲义[M]. 2版,北京:高等教育出版社, 1986.[3]姜礼尚.期权定价的数学模型和方法[M].北京:高等教育出版社, 2004.[4]约翰·赫尔.期权、期货和其它衍生产品[M]. 3版,北京:华夏出版社, 1999.[5]王正林,刘明.精通MATLAB 7[M].北京:电子工业出版社, 2006.
金融类毕业论文参考文献
参考文献就是写论文的时候参考过的书籍或网站,直接关系到论文的分数和质量高低。以下是我为您整理的金融类毕业论文参考文献,希望能提供帮助。
篇一 :参考文献
[1] 母宇.中国股票市场与全球主要股票市场联动性研究,[C].西南民族大学:2011.
[2] 于会鹏.中国股票市场板块及其与国外主要市场间的联动性实证研究,[C].理工大学:2009
[3] 陈志宁.中外股票市场的联动分析,[C].农业大学:2009.
[4] 汪波.股票市场波动性网络及其应用[C]华南理工,2012
[5] 徐晓萍. 金融危机下证券网络的复杂性特征研究[C]华东师范大学,2013
[6] 陈俊华.中国股票市场网络模型动态研究[C]浙江工业大学,2012
[7] 兰旺森,赵国浩. 应用复杂网络研究板块内股票的强相关性,[J].中山大学学报:2010(6).20-23
[8] 李耀华,姚洪兴.股票市场网络的稳定性研究,[M].江苏省系统工程学会第十一届学会:2012.
[9] 陈花.基于复杂网络的股票之间有向相关性研究,[C].北京邮电大学:2012.
[10] 陈辉煌,高岩,基于复杂网络理论的证券市场网抗毁性分析[J],金融理论与实:2008(6)154-156
[11] 万阳松,陈忠基. 加权股票网络模型[J].复杂系统与复杂性科学,2005,1(5) :21-27
[12] 李平,汪秉宏.证券指数的网络动力学模型[J].系统工程,2006,24(3):73-77
[13] TianQiu, Bo Zheng,Guang Chen. Financial networks with static anddynamic thresholds,[J]. New Journal of Physics:2010(12).136-138
[14] Nicola Cetorelli, Stavros Peristiani. Prestigious stock exchanges: A network analysis of international financial centers,[J]. Journal of Banking & Finance:2013(37).21-24
[15] Ram Babu Roy, Uttam Kumar Sarkar. Identifying influential stock indices from global stockmarkets: A social network analysis approach,[J].Procedia Computer Science:2011(5).10-13
[16] Xiao fan Liu, Chi k. Tse.A Complex Network Perspective to Volatility in Stock Markets [J]. International Symposium on Nonlinear Theory and its Applications:2010(9).12-15
[17] Simutis R, MasteikaS.Intelligent stock trading systems using fuzzy-neural networks andevolutionary programming methods[J]. Self Formation Theory And Applications.2004,(97).59-63
[18] Dong-Ming Song, Michele Tumminello, Wei-Xing Zhou, Rosario N. Mantegna. Evolution of worldwide stock markets, correlation structure and correlation basedgraphs,[J]. PACS:2011(3).90-92
[19] Xiangyun Gao, Haizhong An, Weiqiong Zhong. Features of the Correlation Structure of Price Indices,[J]. PLOS ONE:2013(4).34-36
[20] MarekGa??zka. Characteristics of the Polish Stock Market correlations,[J]. International Review of Financial Analysis:2011(1-5).
[21] 杨治辉,贾寒梅.股票收益率相关性的网络结构分析,[M].中国控制学会:2011.
[22] 周艳波,蔡世民,周佩玲.金融市场的无标度特征研究,[J].中国科学技术大学学报:2009(8).19-22
[23] Barabasia L, Albert R, Jeong H. Mean-field theory for scale-freerandom networks[J].Physica A, 1999( 272).173-187
[24] 李辉,赵海,徐久强,李博,李鹏,王家亮. 基于k-核的大规模软件核心框架结构抽取与度量,[J].东北大学学报:2010(11).345-347
[25] 李辉,赵海.基于k-核的大规模软件宏观拓扑结构层次性研究,[J].电子学报:2010(6).134-136
[26] 李备友,刘思峰. 网络化市场结构下证券市场传闻的扩散规律研究,[J].华东经济管理:2012(12).90-92
篇二:参考文献:
[1]袁申国,陈平,刘兰凤,. 汇率制度、金融加速器和经济波动[J]. 经济研究,2011,(1).
[2]黄志刚,. 货币政策与贸易不平衡的调整[J]. 经济研究,2011,(3).
[3]George J. Gilboy,钟宁桦,. 度量中国经济:购买力平价的适当应用[J]. 经济研究,2010,(1).
[4]万晓莉,霍德明,陈斌开,. 中国货币需求长期是否稳定?[J]. 经济研究,2010,(1).
[5]裘骏峰,. 投机资本流入、升值预期和最优升值路径[J]. 经济研究,2010,(2).
[6]张屹山,孔灵柱,. 基于权力范式的汇率决定研究[J]. 经济研究,2010,(3).
[7]李成,王彬,马文涛,. 资产价格、汇率波动与最优利率规则[J]. 经济研究,2010,(3).
[8]刘尧成,周继忠,徐晓萍,. 人民币汇率变动对我国贸易差额的动态影响[J]. 经济研究,2010,(5).
[9]黄志刚,陈晓杰,. 人民币汇率波动弹性空间评估[J]. 经济研究,2010,(5).
[10]路继业,杜两省,. 货币政策可信性与汇率制度选择:基于新政治经济学的分析[J]. 经济研究,2010,(8).
[11]卞世博,贾德奎,. 后金融危机背景下的中国经济运行风险管理——第四届中国立信风险管理论坛综述[J]. 经济研究,2010,(12).
[12]赵志君,陈增敬,. 大国模型与人民币对美元汇率的评估[J]. 经济研究,2009,(3).
[13]伍戈,. 中国的货币需求与资产替代:1994—2008[J]. 经济研究,2009,(3).
[14]王晋斌,李南,. 中国汇率传递效应的实证分析[J]. 经济研究,2009,(4).
[15]张瀛,. 汇率制度、经济开放度与中国需求政策的有效性[J]. 经济研究,2008,(3).
[16]中国经济增长与宏观稳定课题组,张平,刘霞辉,张晓晶,汪红驹,. 外部冲击与中国的通货膨胀[J]. 经济研究,2008,(5).
[17]唐翔,. “富人社区效应”还是巴拉萨-萨缪尔森效应?——一个基于外生收入的实际汇率理论[J]. 经济研究,2008,(5).
[18]龚刚,高坚,何学中,. 汇率制度与货币政策——发展中国家和小国经济的思考[J]. 经济研究,2008,(6).
[19]管汉晖,. 浮动本位兑换、双重汇率与中国经济:1870—1900[J]. 经济研究,2008,(8).
[20]施建淮,傅雄广,许伟,. 人民币汇率变动对我国价格水平的传递[J]. 经济研究,2008,(7).
篇三:参考文献:
[1] 方毅,桂鹏. 亚太地区股票市场的联动程度—基于次级贷冲击的`研究[J]世界经济研究,2010(8).27-30
[2] BarabásiA L, Albert R. Emergence of scaling in random networks[J].Science, 1999(286). 509-512
[3] Kim H J.Kim I M.Scale-free network in stock market[J].J KorPhys Soc,2002,40(6):105-108.
[4] Newman M E J.The structure and function of complex networks[J].SIAM Review,2003(3).167-256
[5] Jukka-Pekka Onnela, Jari Saram?ki, Kimmo Kaski. A comparative study of social network models: Network evolution models and nodal attribute models[J]. Social Networks:2009(4)13-16
[6] 汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006(1).9-14.
[7] 任卓明,刘建国,邵凤,胡兆龙,郭强. 复杂网络中最小K-核节点的传播能力分析,[J].物理学报:2011(7).90-93
[8] 韩定定,复杂网络的拓扑、动力学行为及其实证研究,华东师范大学无线电物理博士论文[C],2007
[9] Simutis R, MasteikaS.Intelligent stock trading systems using fuzzy-neural networks andevolutionary programming methods[J].Self Formation Theory And Applications.2004(97)59-63
[10] Xiao fan Liu, Chi k. Tse.AComplex Network Perspective of World Stock Markets:synchronization and volatility,[J]. International Journal of Bifurcation and Chaos:2012(6).62-66
[11] Ram Babu Roy, Uttam Kumar Sarkar. Capturing Early Warning Signal for Financial Crisis from the Dynamics of Stock Market Networks: Evidence from North American and Asian Stock Markets[J].Journal of Indian Institute of Management Calcutta:2009(8).57-59
[12] 李耀华,姚洪兴.金融危机下股票市场网络的结构特性研究[J].信息工程学院学报,2010(1).23-26
[13] Benjamin M. Tabak, Thiago R. Serra, Daniel O. Cajueiro. Topological properties of stockmarket networks:The case of Brazil[J]. Physica ,2010(389).3240-3249
[14] Chi K.Tse,JingLiu,Francis C, M. Lau. A network perspective of stock market[J].Journal ofEmpirica Finance.2010,4(17).659-667
[15] 闵志锋.上海证券市场的复杂网络特性分析 [J].东北大学学报 (自然科学版).2007 (7).1053-1056
[16] 黄玮强,姚爽,中国股票关联网络拓扑性质与聚类结构分析[J],管理科学:2008(3).92-95
[17] 高雅纯,魏宗文,汪秉宏.Dynamic Evolution of Financial Network and Its Relation to Economic Crises,[J].World Scientific:2013(2).142-141
[18] 陈守东,韩广哲,荆伟.主要股票市场指数与我国股票市场指数间的协整分析,[J].数量经济技术经济研究:2003(5).35-37
[19] 文圭炫,洪正孝.太平洋地区国家的联动性,[J].商务管理研究:2003(2).111-113
[20] RosylinMohd.Yusof&M.ShabriAbd.Majid,Who moves the Malaysian stock market-the U.S.or Japan[J],International Journal of Business,2006(8)367-406
[21]Terence,Tai-Leung Chong,Ying-Chiu Wong,Isabel,Kit-Ming Yan,Internationallinkagesof the Japanese stock market,Japan and the World Economy,2007(20)773-786
[22] 周珺. 我国大陆股票市场与周边主要股票市场的联动分析[J]企业经济,2007(1).77-79
[23] Woo-Sung Jung ,SeungbyungChae, Jae-Suk Yang,Hie-Tae Moon. Characteristics of the Korean stock marketcorrelations,[J]. Elsevier Science:2008(2).90-93
[24] Sunil Kumar, NiveditaDeo. Correlation and network analysis of global financial indices,[J]. American Physical Society:2012(8).21-23
篇四:参考文献
[1] Michael Grahama,JarnoKiviahob,JussiNikkinenb, Mohammed Omranc. Global and regional co-movement of the MENA stockmarkets,[J]. Journal of Economics and Business:2013(1). 165-167
[2] 高莹,靳莉莉.沪深300指数与世界主要股票指数的关联性分析[J].金融管理,2008(2). 3-8.
[3] Hwahsin Cheng, John L. Glascock. Stock Market Linkages Before and After the AsianFinancial Crisis: Evidence from Three Greater ChinaEconomic Area Stock Markets and the US,[J]. Pacific Basin Financial Markets and Policies:2006(2).125-127
[4] Ma.BelindaS.Mandigma.Stock market linkages and the global financial crisis,[J].Journal of University of Santo Tomas:2009(8).278-280
[5] Ugur Ergun. How does Turkish stock market respond to the externalshocks Pre- and post- crises analyses,[J]. African Journal of Business Management:2012(2).34-37
[6] 赵勇. 金融危机背景下中美欧股票市场联动性研究[C]上海社会科学院,2012(5).76-79
[7] 洪天国. 欧洲股票市场与中国股票市场之间的波动溢出效应研究[C]江西财经大学,2013(1).29-34
[8] 金融市场稳定性的判别与度量[C]山西大学,2012(2).192-196
[9] 陈守东,陈雷,刘艳武.中国沪深股票市场收益率及波动性相关分析,[J].金融研究:2003(7).230-235
[10] 刘存绪.论中国股票市场的国际化,[J].资本市场:2000(4).30-32
138 浏览 3 回答
226 浏览 3 回答
351 浏览 4 回答
202 浏览 3 回答
292 浏览 5 回答
209 浏览 5 回答
360 浏览 3 回答
208 浏览 4 回答
270 浏览 4 回答
234 浏览 5 回答
346 浏览 6 回答
211 浏览 4 回答
266 浏览 3 回答
248 浏览 6 回答
125 浏览 5 回答