n维欧几里得空间的推广,可视为“无限维的欧几里得空间”,是泛函分析的重要研究对象之一。在三维欧几里得空间中,任何两个向量之间规定了一个内积,它是建立三维欧几里得几何学的基础。有了内积,就有向量的长度、两个向量的交角和向量到直线或平面上的投影等等。这些普通而重要的几何概念及相应的研究方法,不仅被推广到n维空间,而且在许多不同的领域,例如积分方程、数学物理、三角级数或更一般的正交级数等理论中,被推广到由函数构成的无限维空间上去,成为研究有关问题的有力工具。第一个具体的希尔伯特空间最早是由D.希尔伯特在研究积分方程时首先提出的。他在平方可积的无穷实数列{xn}全体所组成的空间l中规定了内积,把空间l看作欧几里得空间向无限维的推广,从而有效地解决了一类积分方程求解及其本征展开的问题。不久,人们就建立了一般的希尔伯特空间理论,到20世纪30年代已取得了丰富的成果。希尔伯特空间在分析数学的各个领域中有着深厚的根基,也是描述量子物理的基本工具之一,它已经被广泛地应用于数学和物理的各个分支,如积分方程、微分方程、过程、函数论、调和分析、数学物理及量子物理学等等。关于希尔伯特空间及其上的算子理论仍然是泛函分析的重要课题之一。内积空间和希尔伯特空间设H是实数域或复数域C上的线性空间,如果对于H中任何两个向量x和y都对应着一个数(x,y)∈C,并且满足下列条件:①正定性,对一切x∈H,(x,x)≥0,而且(x,x)=0当且仅当x=0;②线性,对x,y,z∈H和α,β∈C,成立(αx+βy,z)=α(x,z)+β(y,z);③(共轭)对称性,对x,y∈H成立(x,y)=(y,x)(实数域)或(x,y)=(y,x)的共轭(复数域);则称(x,y)为H中x,y的一个内积。定义了内积的空间H称为内积空间。在内积空间H中定义函数||x||=的开方为x的范数(‖x‖即x的“长度”),这时,H成为一个赋范空间。如果作为赋范空间,H是完备的(见巴拿赫空间),就称H为希尔伯特空间。作为希尔伯特空间的例子,除了欧几里得空间和l空间以外,还有勒贝格平方可积函数空间 L^2[α,b](其中内积规定为(f,g)=f(t)g(t)(实数域)或f(t)乘以g(t)的共轭(复数域)在(α,b)区间的积分,而α,b也可为无限大)。在数学物理中越来越多地使用各种类型的希尔伯特空间。平行四边形公式和柯西-施瓦茨不等式在内积空间中,由内积导出的范数必满足类似于平面几何学中的平行四边形公式,即对H中任何x、y,||x+y||^2+||x-y||^2=2(||x||^2+||y||^2);反之,一个赋范线性空间H,若它的范数满足上述平行四边形公式,则这个范数必是由定义在H上的某个内积导出的范数。内积还有重要的柯西-施瓦茨不等式:|(x,y)|<=||x||*||y|| 。正交与勾股定理在希尔伯特空间H中,如果x,y满足(x,y)=0,就称x和y正交(或直交),记为x⊥y。当x⊥y时,成立勾股定理:||x+y||^2=||x||^2+||y||^2。如果x和H的子集M中任何元都正交,就称x和M正交,记为x⊥M。与M正交的所有元素的集合记为M寑。投影定理希尔伯特空间理论中的一个基本定理。设M是希尔伯特空间H的凸闭子集,则对H中每个向量x,必存在M中惟一的y,使得||x-y||取到y在M中变化时的最小值。这个性质称为变分定理。特别,当M是H的闭线性子空间时,z=x-y必与M正交,即对于闭线性子空间M,分解x=y+z不仅惟一,而且z⊥y。这就是投影定理。其中,y称为x在M中的投影(分量)。因为x在M上的投影y是达到极小值的惟一解,所以这个结果不仅在理论研究中,而且在很多应用性科学,如近似理论(包括有限元方法)、预测理论、最优化等多方面均有着广泛的应用。正交系设{ek}是内积空间H中一族彼此不同的向量,如果其中任何两个向量都正交,即当k≠j时,(ek,ej)=0,则称{ek}是一正交系;如果其中每个向量的范数又都是1,即对一切k,(ek,ek)=1,则称{ek}是规范正交系。对于希尔伯特空间H的规范正交系{ek},如果包含{ek}的最小闭子空间就是H,就称{ek}为H的完备规范正交系。设{ek}是规范正交系,则H中任一向量 x在ek方向的投影,即x在{ek}生成的一维子空间上的投影,就是Σ(x,ek)ek;而x在{ek}生成的闭子空间M上的投影就是H。显然有||x||^2<=Σ|(x,ek)|^2,即向量 x在某个子空间M上的分量“长度”永不超过x的长度,它称为贝塞尔不等式。如果{ek}是完备规范正交系,那么成立着x=Σ(x,ek)ek(傅里叶展式),||x||^2=Σ|(x,ek)|^2(帕舍伐尔等式)。傅里叶展开是古典分析中傅里叶级数或一般正交级数展开的推广。里斯表示定理希尔伯特空间H上每个连续线性泛函F,对应于惟一的y∈H,使F(x)=(x,y),并且||F||=||y||,这就是里斯的连续线性泛函表示定理。因此,希尔伯特空间的共轭空间与自身(保持范数不变地)同构(实际上是一种共轭线性同构),即H=H*。这个结果在希尔伯特空间算子理论中具有很重要的作用。