DTW(dynamic time warping)是时间序列分析中一个很早(1994年,论文的年纪比我都大)也很经典的算法了。它其实借用的是经典算法的“动态规划”的思想。一般来说,时间序列数据如果要做分类,那么大体可以将实验步骤分为:数据预处理(去噪或数据增强),数据表征,选取分类器(机器学习算法还需要选取合适的距离计算方法)。虽然DTW算法也给出了路径,但我实在想不出如何利用path,因此我更倾向于将DTW算法归为距离计算方法。 第一部分Introduction不再介绍。直接介绍第二部分:Dynamic Time Warping 作者首先提到,dtw算法成功应用在了语音识别领域——研究者将现实中一个单词的发音(其实就是一条时间序列)与模板库中单词的发音去一个个匹配。怎么衡量匹配程度的大小呢?