上下极限有多种定义方式,其中一种是比较容易理解的,就是集合E的上确界,集合E中的元素是数列An所有子列的收敛点,我说了例子就容易理解了,例如数列1,0,1,0,1,0......显然本身是不收敛的,但其子列1,1,1,1.....和子列0,0,0,0,0......分别收敛到1和0,集合E={0,1}上极限就是1,下极限就是0,(事实上上极限它本身一定也是极限点,所以上极限也可以这么认为就是集合E中最大的元素),希望能帮助到你
定义:
设{Xn}为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε成立,那么就称常数a是数列{Xn}的极限,或称数列{Xn}收敛于a。记为lim Xn = a 或Xn→a(n→∞)。
’极限思想’方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。
数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。
人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的概念和以上的极限思想方法。
参考资料极限(数学术语)百度百科
设{Xn}为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε成立,那么就称常数a是数列{Xn}的极限,或称数列{Xn}收敛于a。记为lim Xn = a 或Xn→a(n→∞)如果数列没有极限,就说数列发散。补充:n应该是X的下角标,我在Word里修改了,弄过来又变了……
我理解是对于每个x0,fn(x0)的上下极限构成的新的函数。你那个学校的?
214 浏览 3 回答
343 浏览 5 回答
237 浏览 3 回答
111 浏览 3 回答
91 浏览 3 回答
80 浏览 5 回答
86 浏览 4 回答
350 浏览 5 回答
310 浏览 6 回答
293 浏览 4 回答
119 浏览 2 回答
317 浏览 3 回答
354 浏览 3 回答
131 浏览 2 回答
312 浏览 2 回答
346 浏览 3 回答
277 浏览 4 回答
258 浏览 2 回答
327 浏览 2 回答
260 浏览 3 回答
227 浏览 3 回答
289 浏览 4 回答
108 浏览 5 回答
331 浏览 2 回答
272 浏览 4 回答