文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如A.Bensousson,J.L.Lion、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;O.A.Oleinik等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;T.Hou和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。
焊接是一种连接金属或热塑性塑料的制造或雕塑过程。这是我为大家整理的材料焊接技术论文,仅供参考!
高强材料的焊接浅析
摘要:在现代工业中,高强材料越来越占有重要的地位,但其焊接时的焊接裂纹、脆化、软化等现象,给安全生产与产品的使用效率带来了隐患。为此,笔者根据自身学习与实践经历,就高强材料尤其是高强钢的焊接特性进行分析阐述。
关键词:高强材料;焊接;特性
一、高强材料概况
在当前的管道、容器中,高强材料越来越占有重要的地位。当中最重要的,是将钢里除碳意外添加一类或多类合金成分(合金成分的比例低于百分之五),用来加强钢的强度,将钢的强度提高到275MPa或更高,并产生更优的综合质量,此种钢被称为高强钢,它的基本优点为强度高、塑性与韧性也优于普通钢。根据钢的屈服强度的程度和热处理时的特性,高强钢总体上有两种。
热轧、正火钢,其屈服强度处于294Mpa~490MPa间,而利用状态是热轧、正火与控轧,在类别上是非热处理强化钢,该种钢的现实中使用的最为常见。
调质钢,其屈服强度处于490Mpa~980Mpa间,通常在调质状态中应用,在类别上是热处理强化钢。该种刚的特性是不烦强度高,而且塑性与韧性比较好,能够直接于调质时进行焊接。所以,这中调质钢在使用中越来越普及。
现在常使用的高强钢,钢板牌号包含以下几种:16MnR、15MnVR、13MnNiMoNbR、18MnMoNbR;锻件牌号包含以下几种:16Mn、15MnV、20MnMo、20MnMoNb。
二、高强钢的焊接特性
高强钢中碳含量通常不高于0.20%,合金成分的总量通常不高于5%。因为高强钢包含一些的合金成分,使它的焊接性和别的材料有一些不同,具体焊接特性有以下几点:
1、焊接时的焊接裂纹
(1).高强钢因为使用了让钢强度增加的碳、锰等元素成分,当焊接的时候往往产生淬硬,而产生的硬化部分往往很敏感,所以,当刚性过强与拘束应力较强的状态下,如果焊接方式有问题,就会造成冷裂纹。加上这中裂纹存在较长的延迟,容易造成较大的危害。
(2).再热裂纹为在焊作业完成后,慢慢去掉应力热的过程中,或较长时间在高温状态下于临近熔合线粗晶部位造成的沿晶开裂。通常认为,此类裂纹造成的原因,是因为焊接高温导致HAZ旁边的V、Nb、Cr、Mo等元素固溶在了奥氏体内,焊接完成后进行,但没有完全析出,而是在PWHT的时候呈弥散状态析出,所以强化了晶内,将应力在松弛的时候产生的蠕变变形汇聚在了晶界。
高强钢在焊接的时候,通常不会造成再热裂纹,例如16MnR、15MnVR之类。然而对Mn-Mo-Nb与Mn-Mo-V等类别的高强钢,因为Nb、V、Mo等成分比较敏感,是造成再热裂纹的常见因素,所以这些高强钢与焊接完成后实施热处理时,需要特别回避容易造成再热裂纹的温度范围,以免造成再热裂纹。
2、焊接部位的脆化与软化
(1).应变时效脆化。焊接部位于焊接前要进行各种冷处理(如钢板的剪切、管道筒罐的卷圆),材料会导致有所变形,要是变形的部位再收到200至450℃的热作用,可能造成应变时效,继而产生脆化,往往导致材料的塑性减弱,因此造成钢材的脆断。
PWHT能够减弱焊接时产生应变时效,将韧性一定程度上恢复。1998年制定的《钢制压力容器》中明确规定,筒状钢材的厚度要达到下列标准:碳素钢达到的的厚度不能低于圆筒内部直径的百分之三;别的钢的达到的厚度不能低于内部直径的百分之二点五。而且,那些冷成形与中温成形中制作的受压产品,要在成形之后实施热处理。
(2).焊缝与热影响区产生的脆化。对材料进行焊接时,加热与冷却往往不会十分均匀,便会产生不均匀的结构。焊缝与热影响区具有一定的脆性,这是是焊接接头里最薄弱的地方。焊接线的能量强度会对高强钢WM与HAZ性能产生较大影响,高强钢容易淬硬,线能量如果不高,HAZ会产生马氏体造成裂纹;线能量如果过高,WM与HAZ产生粗糙的晶粒,会造成焊接部位的脆化。线能量如果过高,调质钢而造成的HAZ脆化现象尤其明显。因而焊接作业时,要把线能量控制于合适的度量。
(3).焊接部位的热影响区产生的软化。因为焊接时的热作用,会造成部分地区强度降低,形成了一定的软化带。HAZ区的结构软化会因为焊接线热度的提升与预热温度的提升而恶化,不过通常的软化区的性能还是能够达到规定标准值的最低标准,因而这些钢材地热影响部位产生的软化现象,如果做到工艺合适,就不会降低焊接部位的正常使用。
三、当代新式高强材料的焊接特性
1、高强管线钢
高强管线钢指X70以上的钢级,至尽为止,X80是已建管线钢中使用的强度最高的管线钢。加拿大Ipsco钢铁公司在1998年年报中明确指出,该公司已成功进行了X90和X100SSAW钢管试生产,最终目标是生产各种规格的X100钢管。日本NKK、住友金属、新日铁、川崎制铁及欧洲钢管公司也相继研制成功X90和X100UOE钢管,正在研制X120钢管。
为保障管线的安全可靠性,在提高强度的同时,必须相应提高韧性。特别是高压输气用钢管,必须有很高的CVN。超贝氏体和超马氏体被誉为21世纪的管线钢,其钢级为X80~X100(贝氏体)、X100~X120(马氏体)。在成分设计上,大体上都是(超)的Mn-Nb-Ti系或Mn-Nb-V(Ti)系,有的还加入Mo、Ni、Cu等元素,因此,热影响区的韧性不会比较低强度的管线钢差,冷裂纹敏感性不大。对于强度高于600MPa的钢,焊接时要特别关注WM冷裂纹问题,尤其是现场对接环焊缝必须采用超低氢焊接材料。
2、超细晶粒钢
上世纪90年代,世界主要产钢国相继开展了新一代钢铁材料的研究,其中,尤以日本的“超级钢“计划、中国的“新一代钢铁材料重大基础研究”和韩国的“21世纪高性能结构钢”引起世界钢铁界的瞩目和热情参与。
在新一代钢铁材料的研究中,最引人注目的是超细晶粒的研究,通过超细晶粒(最小1mm)实现强度翻番的目标。超细晶粒钢焊接的最大问题就是HAZ的晶粒长大倾向,为解决这一问题,须采用激光焊、超窄间隙MAG焊、脉冲MAG焊等低热输入焊接方法。
参考文献
[1]王建利.高强钢的焊接工艺评定[J].云南水力发电,2007,(02).
[2]李明.高强钢的焊接[J].现代焊接,2005,(03).
[3]栗卓新,刘秀龙,李虹,李国栋.高强钢焊材及焊接性的国内外研究进展[J].新技术新工艺,2007,(05).
试论焊接技术
摘 要:焊接是一种连接金属或热塑性塑料的制造或雕塑过程。焊接过程中,工件和焊料熔化形成熔融区域,熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。今天,随着焊接机器人在工业应用中的广泛应用,研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,以进一步提高焊接质量。
关键词:焊接;金属;能量;技术
1、焊接技术概论
1.1焊接过程的物理本质
焊接是两种或两种以上同种或异种材料通过原子或分子之间的结合和扩散连接成一体的工艺过程.促使原子和分子之间产生结合和扩散的方法是加热或加压,或同时加热又加压。
1.2焊接的分类
金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类。
1.2.1熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
1.2.2压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
1.2.3钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
1.2.4焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。
1.2.5现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。
搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。
1.2.6未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。
2、焊接-工业艺术
焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。本文对这一技术的出现与运用进行了分析。
2.1艺术创造与工艺方法永远是密不可分的。作为一种工业技术,焊接的出现迎合了金属艺术发展对新的工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。金属焊接艺术可以作为一种相对独立的艺术形式以分支的方式从传统的金属艺术中分离出来,这是因为焊接具有艺术性。
2.2焊接可以产生丰富的艺术创作的表现语言。
焊接通常是在高温下进行的,而金属在高温下会产生许多美妙丰富的变化。金属母材会发生颜色变化和热变形(即焊接热影响区) ;焊丝熔化后会形成一些漂亮的肌理;而焊接缺陷在焊接艺术中更是经常被应用。焊接缺陷是指焊接过程中,在焊接接头产生的不符合设计或工艺要求的缺陷。其表现形式主要有焊接裂纹、气孔、咬边、未焊透、未熔合、夹渣、焊瘤、塌陷、凹坑、烧穿、夹杂等。这是个十分有趣的现象 :焊接的艺术性通常体现在一些工业焊接的失败操作之中,或者说蕴藏于一些工业焊接极力避免的焊接缺陷之中。其次,焊接艺术语言是独特的。选用不同的金属材料,使用不同的焊接工艺,焊接的艺术性可以在不同的金属艺术形式中发挥得淋漓尽致。
在焊接雕塑作品中,焊缝和割痕不是作为一种技术加工的痕迹被动地存在,而是以一种精彩的、不可或缺的表现语言着力地加以体现的。一件焊接雕塑,粗的焊缝裸露在雕塑表面,各种不规则的切割痕迹也变成了艺术家优美的艺术语言在很多情况下,由于焊接雕塑所追求的粗糙质朴的风格,金属的锈蚀、瑕疵也大多根据作品的需要特意保留,因此,在焊接雕塑中常常可以感觉到一种非雕琢的、原始的美。雕塑下部的钢板拼接处的焊缝很粗大,从焊接工艺的牢固性来看,这显然不仅仅是出于对雕塑结实程度的考虑,在这件雕塑中,下部几条扭曲的焊缝已经作为雕塑整体审美的一个重要因素而成为其不可缺少的一部分。从雕塑整体来看,不论是上半部分的文字造型,还是下半部分的肌理处理,到处有扭曲的焊接痕迹的出现,整个作品达到了整体视觉语言的统一。 手工等离子切割的方法,利用切割时电流的热量,使切割边缘产生热影响区,这样就给亮白色的不锈钢“染”上了一圈略带渐变的色彩。同时,通过对焊接规范的调节,割枪喷出的强烈气流会在切割钢板熔化的瞬间在切割边缘“吹”起一圈随机形成的肌理,在切割完成金属冷却后,固化为一道美丽的割痕,与中间平坦光亮的不锈钢板材形成了质感的对比。这种随机效果的形成过程带有一定的偶然性,但又是在一定的焊接规范下必然产生的现象。从尺寸的角度考虑,尺寸较大的焊接艺术壁饰可采用半自动CO2气体保护焊,较小的可采用手工钨极氩弧焊。
如果把一幅壁饰作品看成一幅画的话,画面中的点、线、面、黑、白、灰甚至颜色的处理都可以通过焊接的方法来实现。各种型号、各种材质的金属丝,应用不同的焊接工艺会在画面上以不同的形式出现。不同金属的颜色不同,不锈钢的亮银色、铝材的亚银色、碳钢的乌亮色,钛钢、青铜、紫铜、黄铜而且就钢材来说,不同的钢材在高温受热时会出现不同的颜色变化,即焊接热影响区不同。另外,切割也是焊接艺术壁饰创作的方法之一,既可以与焊接结合使用,也可以单独使用,这完全取决于创作者的创作意图和对工艺与效果的掌握程度。以上所述的这些方法综合起来,变化的丰富可想而知。
3、焊接作业中发生火灾、爆炸事故的原因
3.1焊接切割作业时,尤其是气体切割时,由于使用压缩空气或氧气流的喷射,使火星、熔珠和铁渣四处飞溅(较大的熔珠和铁渣能飞溅到距操作点5m以外的地方),当作业环境中存在易燃、易爆物品或气体时,就可能会发生火灾和爆炸事故。
3.2在高空焊接切割作业时,对火星所及的范围内的易燃易爆物品未清理干净,作业人员在工作过程中乱扔焊条头,作业结束后未认真检查是否留有火种。
3.3气焊、气割的工作过程中未按规定的要求放置乙炔发生器,工作前未按要求检查焊(割)炬、橡胶管路和乙炔发生器的安全装置。
4、焊接作业中发生火灾、爆炸事故的防范措施
4.1焊接切割作业时,将作业环境lOm范围内所有易燃易爆物品清理干净,应注意作业环境的地沟、下水道内有无可燃液体和可燃气体,以及是否有可能泄漏到地沟和下水道内可燃易爆物质,以免由于焊渣、金属火星引起灾害事故。
4.2高空焊接切割时,禁止乱扔焊条头,对焊接切割作业下方应进行隔离,作业完毕应做到认真细致的检查,确认无火灾隐患后方可离开现场。
4.3应使用符合国家有关标准、规程要求的气瓶,在气瓶的贮存、运输、使用等环节应严格遵守安全操作规程。
4.4对输送可燃气体和助燃气体的管道应按规定安装、使用和管理,对操作人员和检查人员应进行专门的安全技术培训。
4.5焊补燃料容器和管道时,应结合实际情况确定焊补方法。实施置换法时,置换应彻底,工作中应严格控制可燃物质的含影实施带压不置换法时,应按要求保持一定的电压。工作中应严格控制其含氧量。要加强检测,注意监护,要有安全组织措施。
作为一种工业技术,焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。
上述种种焊接缺陷的表现形式以及焊接热影响区,是通过一定规范下的焊接操作形成的,也只有通过焊接的方式才会产生这些艺术语言。焊接艺术作品的表面效果是其它金属加工工艺无法或者很难实现的,因而说焊接艺术具有独特的艺术性。
(材料科学)或者(材料化学前沿),你都可以从这些方面着手写啊~有很多点可以写的~
在很大程度上,化学很受人喜爱,因为神奇多变的化学反应可以创造新的物质,让我们的生活更为方便舒适。执著于金属研究的卢柯说,作材料研究是如此地令人激动,有那么多的事情等着我们去发现,去研究!“超音速”的科研经历 卢柯以常人所不能及的“超音速”,20岁念完大学,25岁拿下博士学位,28岁成为研究员,30岁成为博士生导师,32岁任国家重点实验室主任,35岁担任中科院金属研究所所长,37岁当选中国科学院院士,取得了一系列国际公认的高水平科研成果,在《科学》和《物理评论快报》等顶级国际学术期刊发表了一系列论文。大学时就读于机械制造工程系金属材料及热处理专业的卢柯与金属结下了不解之缘,他最喜欢的课程是《金属学》与《金属材料的热处理》。1985年,卢柯从华东工学院(现为南京理工大学)毕业,来到中科院金属研究所攻读硕士学位。在“纳米浪潮”还没有掀起的时候,他较早地进入了后来很热门的纳米领域。攻读博士学位期间,卢柯对非晶态金属的晶化动力学及其微观机制进行了深入研究,在国际上首次提出了非晶态材料的有序原子集团切变沉积化机制,并解释了一系列用经典理论难以解释的实验结果,为以后研究非晶体转变提供了理论依据;修正了被引用10多年的英国科学家斯考特等人确定的Ni-P非晶合金晶化产物间的位向关系;提出非晶态金属的新晶化机制。在新晶化微观机制的基础上,卢柯于1990年提出制备纳米晶体的新方法——非晶晶化法,具有工艺简单、晶粒度易于控制、界面清洁且不含微孔洞等优点。论文在美国J.Appl.Phys及Scripta Metall.Mater.发表后,已被引用数百次。美国《应用物理杂志》审稿人对卢柯的这一成果极为赞赏,指出“非晶晶化法无疑对纳米材料研究具有重要价值”。材料科学家师昌绪认为,这一方法“为纳米材料的发展开辟了一条新途径,有广阔的应用前景”。国际学术刊物Mater.Sci.Eng.Reports邀请他撰写此领域的专题综述。该制备方法的确定,使我国在纳米晶体研究领域一跃进入国际前列,已成为目前国际上公认的纳米材料3种主要制备方法之一。如何使金属具有超塑性——可承受很大的塑性变形而不断裂,成为各国材料学家面临的一道难题。20年前,葛莱特教授曾预测:如果将构成金属材料的晶粒尺寸减小到纳米量级,材料在室温下应具备很好的塑性变形能力。但多年来,尽管预测得到了计算机模拟结果的肯定,各国材料学家的实验结果却令人失望:孔隙大、密度小、被污染等因素使绝大多数纳米金属在冷轧中易出现裂纹,塑性很差。2000年,卢柯课题组在实验室发现了纳米金属铜在室温下的“奇异”性能——即纳米金属铜具有超塑延展性而没有加工硬化效应,延伸率高达5100%。论文在《科学》上发表后,获得世界同行的普遍好评,纳米材料的“鼻祖”葛莱特教授认为,这项工作是“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。专家指出,“奇异”性能的发现,缩短了纳米材料和实际应用的距离,意味着和普通金属力学性能完全不同的纳米金属,在精细加工、电子器件和微型机械的制造上具有重要价值。卢柯及其课题组的另一项重要成果是关于晶体过热熔化微观机制方面的,发表在2001年第87卷的《物理评论快报》上。很快,材料科学家、剑桥大学教授RobertW.Cahn就在《自然》杂志上给予了专题评论。2003年12月31日,卢柯在《科学》杂志上发表第二篇论文,将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,这为氮化处理更多种材料和器件提供了可能。表面氮化是工业中广泛应用的一种材料表面处理技术。在表面氮化过程中,材料或钢铁的表面氮化处理往往需要在较高温度下(高于500℃)进行,处理时间长达十几个小时,不仅能耗高,更重要的是,许多材料和工件在如此高温下长时间退火后会丧失其基体的高强度或出现变形,因此,表面氮化技术的应用受到很大限制。大幅度降低氮化温度是长期以来表面氮化技术应用中必须解决的重要技术瓶颈。2004年1月12日,“我国金属材料表面纳米化技术和全同金属纳米团簇研究”被评为“2003年中国十大科技进展”之一。2004年4月16日出版的第304卷《科学》杂志上,第三次出现了卢柯的名字。他们的研究表明,在纳米孪晶铜中获得超高强度的同时还保持了其良好的导电率;而以往的研究表明,对铜进行强化以后,其导电率是下降的。成功的“奥秘” 在别人眼中,卢柯是战无不胜的“百胜将军”,是上天最眷顾的人。只有他和课题组的同志才清楚自己曾经的失败,曾经的气馁。“你们所看到的成绩只是我1%的工作,其余的99%都是失败,都是残酷的现实。在我过去的研究中,经常会走到几乎坚持不下去的时候。”卢柯说。“走不下去的时候,我总是勇敢地承认自己失败了。失败了,再换一个思路接着干。当然,这中间有一个心态调整的过程,但是必须调整到一个好的状态,重新开始。失败其实是科学工作的常态。跳高比赛是以失败而结束的,科学工作则是用一次次的失败来铺路,以成功作为新的起点。当你有了一个灵感,钻进了实验室里,半年,十个月,一年甚至两三年下来才有结果,可结果与你预想的完全不一样,当然沮丧极了。但我们的工作就是这样,你可以沮丧,可以暂时地消沉,但你不可以放弃你的目标。失败了,证明这个思路不对,从某种角度看,它就是你到达终极目标的一个过程。我经常对我的学生说,对自己的思维一定要有极强的信心,Nothing is impossible(没有什么事情是不可能的)!”卢柯成功还有一个奥秘——自从上大学后,他就给自己制定了严格的时间表和工作计划,以非常人的工作节奏始终跑在别人的前头。十几年来,他一丝不苟地走在自己的行程中,不受任何外界的干扰。虽然他现在成了媒体追逐的科学明星,但依然故我。“上天是公平的,它给每个人的时间是一样的,做了这个,就不能做那个。有的人活得很轻松,一天的活儿用两天的时间干,我则希望用半天的时间就能把一天的活儿干完。如果这样算来,我干一天的活儿等于别人干两天的活儿。我在金属所干了18年,等于干了三四十年的活儿,那么,我37岁当院士,这样算起来也并不年轻。”卢柯说。材料学面临最好的机会 卢柯在努力工作、享受研究乐趣的同时,也感受到了材料学家的责任感,“现在是中国各个领域发展的最好时期,也给材料学的研究创造了最好的机会”。卢柯说,中国工业化的进程对材料学科提出了许多严峻的、亟待解决的问题。上个世纪90年代,镍的需求量开始上扬,镍的价格不断上涨,2003年,镍的价格已经达到历史最高水平,供需矛盾尖锐,原因就是中国的工业化。镍是用来做不锈钢的,工业化的显著标志是需要大量的不锈钢。其实,现在所有的原材料都在涨价。如果不发展先进的材料,将面临资源减少,价格上涨,中国的工业化成本将是非常巨大的。
284 浏览 4 回答
200 浏览 3 回答
102 浏览 4 回答
258 浏览 2 回答
205 浏览 2 回答
219 浏览 2 回答
89 浏览 3 回答
86 浏览 4 回答
265 浏览 3 回答
326 浏览 3 回答
267 浏览 4 回答
273 浏览 4 回答
226 浏览 5 回答
293 浏览 3 回答
106 浏览 2 回答