制作一个尽可能大得长方形盒子 一、研究内容: 1.如何将一张正方形纸板裁剪成长方体无盖纸盒? 2.怎样裁剪能使这个纸盒最大? 二、研究方法: 实践法、画图法、制表法、计算法、观察法 三、研究过程: 1.我通过观察发现,我们可以通过正方体的展开图推出如何将 一张正方形纸板裁剪成长方体无盖纸盒. 由题可得长方形边长=20cm 设剪去正方形边长=X 长方体无盖纸盒的面积=V 剪去正方形边长 长方体无盖纸盒的面积 X=1时 V=324 cm2 X=2时 V=512 cm2 X=3时 V=588 cm2 X=4时 V=576 cm2 X=5时 V=500 cm2 X=6时 V=384 cm2 X=7时 V=252 cm2 X=8时 V=128 cm2 X=9时 V=36 cm2 从图中可以看出计算这个盒子容积的公式应该是:V=(20-2X)2X, 并得知当X=3时,长方体纸盒的容积最大 那么它是不是最大的呢?最大的是不是在2~3或3~4之间呢? 当X=2.9时 V=584.756 当X=3.1时 V=590.364 由此可得出长方体纸盒的容积最大在3~4之间 剪去正方形边长 长方体无盖纸盒的面积 X=3.2时 V= 591.872cm2 X=3.3时 V= 592.548cm2 X=3.4时 V= 592.416cm2 X=3.5时 V=591.500cm2 X=3.6时 V=589.824cm2 X=3.7时 V=587.412cm2 X=3.8时 V= 584.288cm2 X=3.9时 V= 580.476cm2 从图中可看出X在3~4之间时取3.3最大 收获与反思: 这次写研究报告让我获益匪浅,因为它让我增长了数学上的知识,同时也增长了我计算机的知识.写研究报告还培养了我努力钻研的精神.但因为是第一次,我无法做到完美,里面也肯定有一些不足,但我相信通过以后的学习,我会把我的第二次、第三次……越写越好.