[1] Rong An, Yuan Li, Kaitai Li. Finite element approximation for fourth-order nonlinear problem in the plane. Applied Mathematics and Computation, 2007, 194(1): 143-155. [2] Yuan Li, Rong An, Kaitai Li. Some optimal error estimates of biharmonic problem using conforming finite element. Applied Mathematics and Computation, 2007, 194(2): 298-308. [3] 李媛,安荣,李开泰. 一个新Pohozaev 恒等式及其在四阶拟线性椭圆方程中的应用. 西安交通大学学报(自然科学版), 2007, 41(10), 1245-1247. [4] Rong An, Kaitai Li. Variational inequality for the rotating Navier-Stokes equations with subdifferential boundary conditions. Computers and Mathematics with Applications, 2008, 55(3): 581-587. [5] Kaitai Li, Rong An. On the rotating Navier-Stokes equations with mixed boundary conditions. Acta Mathematica Sinica, 2008, 24 (4): 577-598. [6] Rong An, Kaitai Li, Yuan Li. Solvability of the 3D rotating Navier-Stokes equations coupled with a 2D biharmonic problem with obstacles and gradient restriction. Applied Mathematical Modelling. 2009, 33(6): 2897-2906. [7] Rong An, Yuan Li, Kaitai Li. Solvability of Navier-Stokes Equations with Leak Boundary Conditions. Acta Mathematicae Applicatae Sinica, English Series, 2009, 25(2): 225-234. [8] Rong An. Discontinuous Galerkin Finite Element Method for the Fourth-Order Obstacle Problem. Applied Mathematics and Computation, 2009, 209(2): 351-355. [9] 安荣,张正策,李媛,李开泰. 具有指数增长的非线性P-双调和问题解的存在性和非存在性.数学年刊, 2009, 30(1): 1-12. [10] 安荣,李开泰. 混合边界条件下非齐次定常Navier-Stokes方程弱解的存在性, 应用数学学报,2009, 32(4): 664-672. [11] 安荣,李开泰. 四阶障碍问题的稳定化混合有限元方法. 应用数学学报,2009,32(6): 1068-1078. [12] 安荣,李媛,李开泰. 混合边界条件下定常Navier-Stokes方程解的正则性. 应用数学,2009,22(1): 83-89. [13] Rong An, Kaitai Li. The boundary integral method for the steady rotating Navier-Stokes equations in exterior domain (I): the existence of solution, Nonlinear Differ. Equ. Appl., 2010, 17(1): 95-108 [14] Rong An, Kaitai Li. The boundary integral method for the linearized rotating Navier-Stokes equations in exterior domain. Applied Mathematics & Computation, 2010, 216(9): 2671-2678. [15] 安荣,李开泰. Plate Contact问题的混合有限元逼近. 数学物理学报,2010,30(3): 666-676. [16] 安荣,李开泰,李媛. 四阶拟线性椭圆方程的有限元误差估计. 工程数学学报,2010,27(3): 527-533. [17] Rong An, Yuan Li, Kaitai Li. Fundamental Solution of Rotating Generalized Stokes Problem in R3. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27(4): 761-768. [18] Yuan Li, Rong An. Two-Level Pressure Projection Finite Element Methods for Navier-Stokes Equations with Nonlinear Slip Boundary Conditions. Applied Numerical Mathematics, 2011, 61(3):285-297. [19] Yuan Li, Rong An. Semi-discrete Stabilized Finite Element Methods for Navier-Stokes Equations with Nonlinear Slip Boundary Conditions Based on Regularization Procedure, Numer. Math., 2011, 117(1):1-36. [20] Rong An, Kaitai Li. Approximation for Navier-Stokes equations around a rotating obstacle. Applied Mathematics Letters, 2012, 25(2):209-214. [21] Yuan Li, Rong An. Penalty Finite Element Method for Navier-Stokes Equations with Nonlinear Slip Boundary Conditions. International Journal for Numerical Methods in Fluids, 2012, 69(3): 550-566. [22] Rong An, Hailong Qiu. Two-Level Newton iteration methods for Navier-Stokes type variational inequality problem. Advances in Applied Mathematics and Mechanics, 2013, 5(1): 36-54. [23] Rong An, Yuan Li. Augmented Lagrange iteration method for fourth-order obstacle problem with gradient restriction (in Chinese). Mathematica Numerica Sinica, 2013, 35(1): 11-20[24] Rong An, Xuehai Huang. Constrained C0 Finite element methods for biharmonic problem. Abstract and Applied Analysis, vol. 2012, Article ID 863125, 19pages, 2012.[25] Rong An, Kaitai Li. Accuracy Analysis of the Boundary Integral Method for Steady Navier-Stokes Equations around a Rotating Obstacle. Acta Mathematicae Applicatae Sinica, English Series, to appear.[26] Yuan Li, Rong An. Two-Level Iteration Penalty Methods for Navier-Stokes Equations with Friction Boundary Conditions. Abstract and Applied Analysis,Volume 2013, Article ID 125139, 17 pages [27] Rong An, Yuan Li. two-level penalty finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions, International Journal of Numerical Analysis and Modeling, to appear.[28] Rong An, Xian Wang, Discontinuous Galerkin finite element method for Plate contact problem with frictional boundary conditions, Journal of Numerical Mathemativs, to appear