中国汽车企业的现状:中国汽车产业的国际化,尤其是自主品牌汽车的国际化是发展的必由之路。中国汽车产业已进入国际化进程,1.从资本市场看,中国汽车行业与国际上各大汽车及零部件制造商相继建立了800多家合资企业,累计资本约960亿美元,占全国汽车工业资本总额的50%左右。今后几年,随着中外合资企业的发展,合作领域还将扩大。2.从技术市场看,中国的入世和市场的更加开放,为汽车工业提供了多种技术创新的途径。在过去成千项引进技术的基础上,通过委托设计、联合设计、合作开发以及集成创新等多种方式,使先进技术能够通过各种渠道进入中国汽车技术市场。同时,通过海外设立技术公司,我们的技术已走向世界。3.从产品市场看,近几年,国际著名的汽车零部件集团相继在中国加大了采购力度和建立采购基地。在全球排名前100位的零部件供应商中,有70%以上已经在中国开展业务,采购金额逐年递增。新世纪的近六年,中国汽车工业迈向国际化的步伐进一步加快。“十五”期间,我国进口汽车70万辆,出口40万辆,到2005年,进口金额由2001年的47亿增加到154亿美元;出口额由2001年的2.7亿增加到200亿美元,实现了出口大于进口。中国汽车产品市场开始与国际市场形成了“你中有我,我中有你”的格局。近六年中,汽车行业不断通过合资、合作以及并购、上市等多种形式提高了行业的总体水平和企业的竞争力,企业实现资本国际化和投资主体多元化的步伐不断加快。日本的丰田、本田、日产、韩国的现代、欧洲的宝马及戴克等大汽车集团都是在新世纪近六年间进入中国的;东风汽车集团在境外实现上市;上汽、南汽已经开始国外并购;奇瑞、吉利、长城、宇通、金龙等自主品牌的集团在海外设厂的计划在实施中。在汽车服务贸易领域,特别是在汽车金融领域,一批批独资及中外合资的公司已经开始运营。国际化将成为汽车产业发展的新动力。中国要跟上世界汽车市场国际化的步伐,就要在更广泛的领域里探讨,汲取世界各国的发展经验,并不断拓展与世界同行的交流领域。汽车产业国际化是积累的过程,国际化要立足本国和自主品牌!中国在全球汽车产业格局中地位加速提升,地位明显呈上升趋势。一项统计表明,09年前5个月,中国汽车生产累计增幅高出10个百分点,结束了2008年下半年以来的低增长局面,可以看出中国汽车产业经历了一个从下降通道中急速拉升产量的过程,这正是信心恢复带来的结果。展望2009年全年,中国经济增长明显快于全球经济,扩大内需的积极财政刺激政策和适度宽松的货币政策,加上中国汽车市场消费正处于成长阶段,使得汽车消费需求巨大而持久。预计2009年全年中国汽车销量同比增长8%至10%,汽车销量达到1,013万至1,030万辆。在市场回暖和政策利好的刺激下,自主品牌汽车发展经过2008年的短暂调整,2009年一季度得到了显著提升。统计显示,2009年一季度自主品牌轿车共销售42.59万辆,占轿车销售总量的30%。这种提升不仅是在销售量和质量方面,而且体现在安全性能上。中国汽车技术研究中心公布的2008年测试结果表明,自主品牌汽车的安全带提示装置、安全气囊、气帘的应用逐步提高,过去只有在高级车使用的安全装置出现在10万元以下级别的自主品牌车型中。在新能源汽车领域,自主品牌企业经过多年努力,在纯电动汽车和混合动力汽车方面取得了重要进展,初步具备了产业化推广的条件。近些年的合资合作使国内汽车企业积累了经验、技术、人才和资金。奇瑞、吉利等企业实现了从完全模仿到正向开发再到自主创新的跨越;一汽、上汽、东风三大轿车支柱企业近几年逐步加强力量开发自主品牌。中国汽车工业的自主创新已经从单项技术和产品创新向集成创新和创新能力建设方面发展。这份“汽车蓝皮书”指出,近年来,中国新能源汽车研究取得了长足进展。随着汽车动力电池技术的突破,中国电动汽车迎来了加快发展的机遇,纯电动汽车、充电式混合动力汽车和普通型混合动力汽车的发展已提上日程。
现在商业化用的正极材料主要有钴酸锂,锰酸锂,磷酸铁锂负极材料基本上都是石墨,钛酸锂发展也不错
动力电池技术正在发生一场深远的变革,磷酸铁锂电池、三元锂电池之后,四元锂电池也在本月驶入产业视线内。
2020年3月4日,通用的“EV week”活动上,通用与它的合作伙伴LG化学一同推出一款新的电池产品Ultium。
▲通用新电池Pack
这款产品的核心并不是被外界吹得神乎其神的电池包技术,其关键在于,Ultium电池的电芯将会使用LG化学最新研发的NCMA四元锂电池。
这款电池的技术原理是通过向NCM三元锂正极材料,混入少量的铝元素,使原本性质活跃的高镍三元正极材料在保持高能量密度的同时,也能维持较稳定的状态。
可以认为,NCMA四元锂电池解决了当下三元锂电池面临的诸多疑难杂症。
与NCM/NCA三元正极材料相比,NCMA四元正极材料在多轮充放电循环后,H2-H3(指正极材料微裂纹增加到难以复原的状态,引起电池内部参数变化)的不可逆相变电压保持稳定,材料内部微裂纹较少,正极材料中过渡金属的溶解情况不明显。同时,NCMA正极材料的放热峰值温度也更高,热稳定性更强。
值得注意的是,NCMA四元正极材料中,成本最为昂贵的钴元素,含量从NCA/NCM 622中的20%下降至5%,成本进一步降低。按照LG与通用公布的数字,NCMA四元电池的量产成本为100美元(约合人民币694元),而此前,LG化学NCM 622的量产成本约为148美元(约合人民币1027元)。
高能量密度、高稳定性、低成本,原本在NCA/NCM三元锂电池上难以同时实现的特性,在NCMA四元锂电池上达成,对于动力电池产品而言,NCMA的量产将会掀起一股技术路线升级的浪潮。
在这股浪潮之中,上游矿业与中游材料商向下游提供的产品必须快速迭代,动力电池企业的技术路线也必须做出新的选择,而新能源整车厂则需要为新的电池技术进行车型的适配,整个新能源产业链都将受到巨大的影响。
一、解密NCMA电池技术原理 已成高能量密度电池有效解决方案
NCMA四元锂电池并不是一项全新的动力电池技术。
从材料构成上来看,这一技术是基于目前两大主流三元锂电池体系NCM与NCA混合而成。
而从电池结构上来看,它也并不像固态电池、锂硫电池、锂空气电池一样对电池主体结构进行改变。
但这项技术却有引领三元锂电池迈向下一个阶段的潜力。
▲通用与LG合作的电
从本质上来看,所谓NCMA四元锂电池,就是使用了NCMA四元正极材料的电池体系。
其原理,是在原本的NCM三元正极材料中混入微量的过渡金属铝,形成四元正极,以保证在正极富集镍元素的同时,电池的稳定性与循环寿命不受影响。
在这一转变过程中,原本NCM三元体系的Li[Ni-Co-Mn]O2正极材料体系变成了Li[Ni-Co-Mn-Al]O2(正极材料的化学构成发生了改变)。
过渡金属铝元素的加入所形成的Al-O化学键强度远大于Ni(Co,Mn)-O化学键,从化学性质上增强了正极的稳定性,进而使得NCMA四元电池H2—H3不可逆相变的电压在经过多次循环后仍然保持稳定状态,且Li元素在正极的脱嵌过程中不易释放氧元素,减少了过渡金属的溶解,提升了晶体结构的稳定性。
而稳定的晶体结构则减少了充放电循环过程中,正极材料微裂纹的形成,正极阻抗的上升速度得到抑制。
与此同时,有研究表明,NCMA的正极材料放热峰值反应温度为205摄氏度,高于NCA正极材料的202摄氏度与NCM正极材料的200摄氏度,这意味着NCMA正极材料的热稳定性更加优秀。
这一特性对于目前动力电池正极高镍路线而言十分关键。
随着电动汽车续航里程的市场需求从早期的300公里不到,到如今的600+公里,三元锂电池的能量密度不断推高,高镍路线不断明确。
▲使用新型电池的Model 3续航将接近600公里
现阶段NCM/NCA 811三元锂电池中,正极的活性物质镍元素的摩尔比已经超过了8成,这一类电池被称为8系三元锂电池。
而在8系三元锂电池之后,镍元素含量超过90%的9系三元锂电池正在蓄势待发。据高工锂电报道,知名锂电材料供应商格林美目前已经完成了镍元素摩尔比例分别达到90%、92%、95%的Ni90、Ni92、Ni95等三元前驱体材料的研发与量产。
不过,看似美好的技术前景背后,隐忧也在不断浮现。
有研究表明,随着三元锂电池正极材料中镍元素的富集,电池的容量保持能力与热稳定性出现了下滑。
当NCM三元锂电池正极的镍含量超过60%,NCA三元锂电池正极的镍含量超过80%,在经过一定次数的循环后,电池正极材料中的微裂纹显著增加,电极阻抗增大,正极开始向电芯中析出大量的氧气。
这一现象直接导致了高镍三元锂电池容量的快速衰减与安全隐患的增加,近年来不断出现的电动汽车自燃事故大多与动力电池的安全隐患有关。
无论是改良电池包形态,还是调整电池管理系统,对于这一情况的缓解都只是杯水车薪。在这样的节点上,动力电池产业开始从材料出发,摸索更具前景的动力电池解决方案。
NCMA四元锂电池正是在这一过程中诞生的技术方案,其稳定的理化结构能够支撑起动力电池未来的高镍路线。
同时,相对廉价的铝元素的混入,大幅减少了动力电池正极中昂贵的钴元素的含量,对于动力电池的降本也十分有效。
无论是技术路线,还是市场层面,NCMA四元锂电池的未来前景都十分广阔。可以认为,四元锂电池是全固态电池诞生之前,最具变革意义的电池技术,动力电池新一轮的技术浪潮将由此开启。而在这轮浪潮中,率先拿出四元锂电池成品的通用与LG无疑是领先了一步。
二、韩国电池专家证明NCMA电池三大优点
目前,韩国汉阳大学锂电专家Un-Hyuck Kim已经通过实验,证明了NCMA四元锂电池在高镍技术路线上的优异性能。
2019年4月2日,Un-Hyuck Kim团队在美国化学学会期刊(ACS)上发表了一篇名为《锂离子电池四元分层富镍NCMA正极》的论文。
论文从容量衰退情况、H2-H3的不可逆相变电压变化情况、正极颗粒微裂纹情况、锂离子脱嵌时氧的释放情况以及热稳定性等五个方面对比了镍含量90%左右的NCM、NCA、NCMA正极材料的性能。
1、NCMA四元锂电池容量衰退情况不明显
为防止实验出现误差,Un-Hyuck Kim团队对2032组电池进行了对照试验。
▲电池容量衰减对比实验数据
在30摄氏度,0.1C的实验条件下,这些电池被置于2.7V-4.3V的电压之间进行循环的初始充放电测试。
其中,镍含量90%的NCM90电池拥有229mAh/g的初始放电容量,镍含量89%的NCA89与NCMA89则分别拥有225mAh/g与228mAh/g的初始放电容量。
可以发现,三种高镍电池的初始放电容量非常接近,但在经过100次充放电循环后,NCMA89电池的放电容量下降至原先的90.6%,而NCM90与NCA89的放电容量则分别下降至原先的87.7%、83.7%。
而在同样温度、同样电压的情况下,将放电倍率提升至0.5C,再对同样(全新)的电池组进行试验。
在经历100次循环后,NCMA89、NCM90、NCA89的放电容量分别下降至原先的87.1%,82.3%和73.3%。
为更接近实际情况,Un-Hyuck Kim团队将电池置于25摄氏度、1C、3.0V-4.2V的环境中又进行了1000次的充放电实验。
这次的结果是,NCMA89电池维持了84.5%的初始容量,NCM90电池与NCA89电池的容量分别下降至初始的68.0%和60.2%。
由此可见,NCMA四元锂电池在高镍路线上的稳定性远优于NCM与NCA三元锂电池,越是接近实际的使用情况,这一优势也越发明显。
2、NCMA四元锂电池结构更加稳定
电池容量的衰减在正极材料这一块,主要体现在H2-H3的不可逆相变与正极材料微裂纹方面。
▲三种电池H2-H3不可逆相变情况
所谓H2-H3的不可逆相变,主要是用来体现正极晶格的变化与锂离子嵌入、脱嵌过程的可逆性(氧化还原峰)。
H1-H2的过程通常是可逆的,而一旦电极出现H3相,则是出现了不可逆的变化,锂离子嵌入与脱嵌的能力都会有所损失,当电压超过一定值,亦或放电倍率达到一定的倍率,H3相便会出现。
因此,对电池性能的考量会体现在出现H3不可逆相变的电压数值变化与氧化还原峰的变化上。
通过对NCMA89、NCA89、NCM90三类电池进行100次的充放电循环测试,Un-Hyuck Kim团队发现,只有NCMA89的H2-H3不可逆相变的电压几乎维持在了初始的状态,而NCM90与NCA89电池的H2-H3不可逆相变的电压均出现了不同程度的下滑,氧化还原峰下降。
即是说,在多次的循环中,NCA与NCM正极材料的电池更容易出现H3相,可逆性出现下滑。
在正极材料的微裂纹方面,不同材料的属性也有所不同,但微裂纹的出现将会影响电极的阻抗,一旦阻抗增大,对于电池的电流充放都会造成影响。
▲三种电池正极材料微裂纹情况,上下两排图片从左至右依次是NCA89电池、NCM90电池、NCMA89电
上文描述中已经提到,NCMA89电极较难出现H2-H3的不可逆相变,其具备较强的机械稳定性。Un-Hyuck Kim团队的实验也证明了这一点,在多次充放电循环后,NCMA89电池正极材料的微裂纹明显少于NCM90与NCA89电池。
除此之外,锂离子脱嵌过程中释放的氧也会溶解过渡金属,导致正极材料结构不稳定。
Un-Hyuck Kim团队通过密度泛函理论(DFT)对NCMA89、NCM90、NCA89电池的氧空位能进行了计算,发现三者的氧空位能分别为0.80eV、0.72eV和0.87eV。
从这一数值可以看出,Al-O化学键稳定的NCA89电池最不容易发生氧的释放,NCMA89电池同样较为稳定,而NCM90电池氧的释放所需要的能量最少,最容易导致正极材料结构发生变化。
3、NCMA正极材料热稳定性更强
考虑到电极材料的热稳定性对于电池安全的影响也极为重要,Un-Hyuck Kim团队还采用差示扫描量热法(DSC)对正极材料放热反应的峰值温度进行了测量。
测量结果显示,NCA89电池正极放热反应的峰值温度为202°C,发热量为1753J/g,而NCM90电池正极显示的峰值温度为200°C ,发热量为1561J/g。相比之下,NCMA89电池的正极放热反应峰值温度为205°C,而发热量仅为1384J/g,NCMA四元锂电池的热稳定性明显优于另外两类电池。
综合多次充放电循环后的容量衰退,H2-H3的不可逆相变、正极材料微裂纹、锂离子脱嵌时氧的释放情况以及热稳定性等五个方面的测试,Un-Hyuck Kim团队最终证明了NCMA正极材料在高镍路线上的优异表现。
三、NCMA正极材料短期量产成本较高 但长期成本更优
但现阶段的NCMA四元锂电池并非完全没有缺点,首先,NCMA四元锂电池的核心——正极材料的制备工艺要比NCM与NCA电池更为复杂。
Un-Hyuck Kim团队在2019年3月发布于Materialstoday的论文《成分与结构重新设计的高能富镍正极,用于下一代锂电池》。
▲Un-Hyuck Kim团队发布的论文
论文中提到,NCMA正极材料的制备步骤大致可分为六个阶段:
1、使用硫酸镍溶液与硫酸钴溶液通过共沉淀法制备球形NC-NCM[Ni 0.893 Co 0.054 Mn 0.053 ](OH)2前体,用作制备[Ni 0.98 Co 0.02 ](OH)2的起始材料,并加入间歇反应器。
2、在惰性气体(氮气)环境下,连续在间歇反应器中加入特定量的去离子水、氢氧化钠溶液、氢氧化氨溶液,同时,将定量的氢氧化钠溶液与足量的氢氧化氨溶液(螯合剂)泵入反应器。
3、在合成过程中,最初形成的[Ni0.98Co0.02](OH)2颗粒逐渐变成球形。
4、为构建NC-NCM结构,将定量的硫酸镍溶液,硫酸钴溶液与硫酸锰溶液(Ni:Co:Mn=80:9:11,摩尔比)引入反应器,制成[Ni 0.80 Co 0.09 Mn 0.11](OH)2,通过调整原料用量,最终获得[Ni 0.893 Co 0.054 Mn 0.053 ](OH)2粉末。
5、将粉末过滤,洗涤,并在真空110摄氏度的环境下干燥12小时。
6、为了制备Li [Ni 0.886 Co 0.049 Mn 0.050 Al 0.015 ] O 2,将前体([Ni 0.893 Co 0.054 Mn 0.053 ](OH)2)与LiOH·H 2 O和Al(OH)3 ·3H2O混合,并在纯氧730摄氏度环境下煅烧10小时。
如果是进行NCM正极材料的制备,可以省去步骤6中加入铝的步骤;而如果是进行NCA正极材料的制备,则可以省去步骤4。
因此,NCMA正极材料的生产工序要比NCM与NCA正极材料的生产工序都更复杂,其短期生产成本必然会更高。
与此同时,铝的用量也需严格控制,用料过多或过少都会影响电池的能量密度,并使稳定性出现衰减,这一工序的引入对生产工艺无疑提出了更严格的要求。
但从长期的角度来看,铝的引入减少了钴的使用,以LG化学与通用合作的Ultium电池为例,该电池中钴元素的含量减少了70%。
而这一情况则能够降低动力电池的生产成本,据了解,2019年7月钴湿法冶炼中间品进口均价19707美元/吨(约合人民币13.7万元/吨),而良品铝矾土的价格大约在1200元/吨。
生产工艺的复杂或许会短暂延缓NCMA电池占领市场的脚步,但长期的利益还是会驱使动力电池厂与车企使用NCMA四元锂电池。
四、NCMA电池2021年量产 材料商、电池厂、整车厂纷纷布局
目前来看,虽然NCMA仍处于产业化的初期,但已经有多家公司进入这一领域进行布局,从公司属性来看,可以分为三类玩家:锂电材料供应商、动力电池企业、整车厂。
1、锂电材料供应商
根据公开信息,锂电材料供应巨头Cosmo AM&T、格林美已经率先在这一领域进行布局。
Cosmo AM&T是LG化学NCMA四元锂电池正极材料的主要供应商,该公司表示,其目前正在研究NCMA高镍正极材料,其中镍含量达到92%,正极能量密度为228mAh/g。
该公司预计会在2021年实现四元正极材料的量产,在量产后会首先与LG化学进行验证,不过该公司在正极材料方面也与三星SDI达成了合作,因此也很可能会向三星SDI供应NCMA正极材料。
而格林美日前在回答投资者提问时也曾透露,公司完成了四元正极材料的研发与量产工作,正在与客户进行吨级认证。
除此之外,企查查显示,美国新能源材料初创公司林奈新能源在中国的分公司申请了四元正极材料的专利,并于2019年2月5日公开了公告。
2、动力电池企业
目前布局NCMA四元锂电池的动力电池企业主要是中韩电池企业。
在中国动力电池企业中,国轩高科与蜂巢能源率先进行了四元锂电池的布局。
蜂巢能源在2019年7月的发布会上发布了NCMA四元锂电池产品,据了解,该产品自2018年3月在蜂巢内部立项,经历了16个月的研发得以面世。
▲蜂巢能源发布会
但目前,蜂巢能源还不具备四元锂电池的量产能力,蜂巢能源总经理杨红新表示,该公司会在2019年第四季度完成NCMA四元正极材料的产能布局,初期产能每年100吨。而到2021年,蜂巢能源就会正式量产NCMA四元锂电池。
国轩高科则没有这么高调,企查查信息显示,2016年,国轩高科申请了两款四元锂电池的制备方法专利,两项专利分别于2018年与2019年获得发明授权。
但国轩高科的技术路线相对小众,其申请的是NCAT(镍钴铝钛)与NCMT(镍钴镁钛)正极材料的制备专利。
宁德时代暂时没有对外宣布会进行NCMA电池的研发,但考虑到格林美是其正极材料的供应商之一,因此宁德时代同样有可能在暗中进行NCMA电池的研发工作。
韩国电池企业中,LG化学率先宣布将会量产NCMA四元锂电池,并将其运用到与通用合作的Ultium电池组中。Lg化学表示,这款电池的能量密度将会达到200mAh/g(并未透露是否是电芯能量密度)。
3、整车厂
目前明确表态将使用NCMA四元锂电池的整车厂只有通用一家,该公司在3月4日开幕的“EV week”上公布了与LG化学合作研发电池的项目,而该项目的核心就是NCMA电池与Ultium电池组技术。
据了解,通用将会在其最新的电动汽车平台上使用该电池,为不同的车型提供50kWh-200kWh的电池组,电池组的成本将会下降至100美元/kWh(约合693元/kWh)。
▲通用全新电动车平台
如果计划顺利,通用未来3年将会推出20款电动汽车,并在2025年达到100万辆电动汽车的销量。
一旦通用借助NCMA电池实现了电动化的成功转型,各大车企也会争相进行效仿,布局NCMA四元锂电池的车企将会大量增加。
锂电材料商、动力电池企业、整车厂三方入局,意味着NCMA四元锂电池方案很有可能会成为未来动力电池的备选方案之一。
如果顺利实现大规模商用,这一产品将会对上游矿业、中游动力电池企业、下游整车厂造成影响。
对于上游矿业而言,钴矿需求量大幅减少,一度处于高位的钴价有可能出现大幅下滑。
对于动力电池企业而言,新一轮技术的迭代将会为头部动力电池企业带来福利,谁先布局的企业将能够抢占第一拨市场,而晚布局的企业则可能面临落后或是被淘汰的情况。
对于整车厂而言,NCMA四元锂电池由于减少了钴的用量,成本大幅降低,车企生产电动汽车的成本压力下降。并且NCMA电池拥有更加优秀的循环寿命与稳定性,电动汽车产品的可靠性将会得到提升。
结语:四元电池时代将至?
通用与LG合作的四元锂电池很有可能会掀起一轮动力电池的产业变革,对比NCM/NCA三元锂电池产品,四元锂电池有着循环寿命更长、安全性优秀、成本更低等优点。对于车企和电池厂而言,这些优点意味着四元锂电池是一个难以拒绝的选项。
但不到大规模量产,四元锂电池的命运尚且无法盖棺定论,三元锂电池后续的发展路线众多,且新的技术在生产工艺、材料等方面均有变革。
单从材料来看,镍锰酸锂“无钴”电池、锂硫电池、锂空气电池都是成为四元锂电池的潜在竞争者,这些电池产品对比目前的三元锂电池同样有着不小的性能优势。
只能说,四元锂电池是目前相对而言接近量产的三元锂电池替代方案,后续情况仍需持续观望。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
战略性新兴产业之新能源汽车:中国车企冲顶 2010年10月18日发布的《国务院关于加快培育和发展战略性新兴产业的决定》规划到2020年,新能源汽车将成为中国国民经济的先导产业。发改委随后在对有关决定解读时指出,新能源汽车是全球汽车行业升级转型的方向。我国要在未来形成具有世界竞争力的汽车工业体系,必须超前部署新能源汽车的研发和产业化。当前,要充分发挥社会各方面的积极性,以产业联盟系列化为途径,着力突破动力电池、驱动电机和电子控制领域关键核心技术,加速形成知识产权,推进插电式混合动力汽车、纯电动汽车推广应用和产业化。而有关规划实际上已经将中国新能源汽车10年内的发展目标定为全球第一。若这一规划成真,中国汽车企业将有望通过新能源汽车的跨越发展一举登上全球汽车产业的王者宝座。 2009年9月,我国在联合国气候变化峰会上提出,争取到2020年非化石能源占一次能源消费总量的比重达到15%左右。同年12月,我国在哥本哈根气候变化大会上承诺到2020年,我国单位GDP二氧化碳排放比2005年下降40-45%。这意味着未来10年我国节能减排任务艰巨。我国工业能耗大约占70%,而汽车是工业能耗大户,我国每年新增石油需求的2/3用于交通运输业。截至2010年10月,全国机动车保有量约1.99亿辆。若未来国内机动车完全更新换代为新能源汽车(价格按每车10万元计算),则整个市场规模将高达20万亿元(这还未考虑到出口)。因此,发展新能源汽车不但有助于节能减排目标的实现,同时也代表了汽车产业的发展方向,其市场空间极其惊人。 根据《电动汽车科技发展“十二五”专项规划》,到2015年中国电动汽车保有量计划达到100万辆,动力电池产能约达到100亿瓦时。 此外,根据《节能与新能源汽车产业规划》,到2015年我国新能源汽车将初步实现产业化,动力电池、电机、电控等关键零部件核心技术实现自主化;纯电动汽车和插电式混合动力汽车市场保有量达到50万辆以上;到2020年,我国新能源汽车实现产业化,新能源汽车产业化和市场规模达到全球第一,其中新能源汽车(插电式混合动力汽车、纯电动汽车、氢燃料电池汽车等)保有量达到500万辆;以混合动力汽车为代表的节能汽车销量达到世界第一,年产销量达到1500万辆。 因此,我国新能源汽车产业即将面临爆发期,可以预计该产业中将会涌现出许多高速成长的企业,而这些企业也将会在资本市场获得良好的表现,极具投资价值。 新能源汽车产业政策支持全面加强 现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。近些年在传统混合动力汽车的基础上,又衍生出一种外接充电式(Plug-In)混合动力汽车(PHEV)。目前全世界各国对电动汽车都非常重视,许多国家都开始投入大量资金开发电动汽车。 我国对新能源汽车产业支持政策由来已久。“十五”期间,投入8.8亿元设立电动汽车重大科技专项,并取得重要进展,形成了“三纵三横”的研发布局,基本形成电动汽车自主开发的技术平台。所谓“三纵”是指开发燃料电池汽车、混合动力电动汽车、纯电动汽车;“三横”是指多能源动力总成控制、驱动电机、动力蓄电池。此外,电动汽车也被列入我国“863”计划12 个重大专项之一。 目前我国汽车产业支持政策包括两个方面:一是鼓励节能环保和小排量汽车,减少现有汽车能源消耗和排放;二是鼓励新能源汽车发展。主要补助插电式(plug-in)混合动力车和纯电动车。支持政策的走向是: (1)一揽子政策推动整个产业发展、补贴范围扩展到私人购车领域 节能与新能源汽车产业发展规划和一揽子扶持政策将于近期上报国务院审议,如审议通过,最快年内有望实施。一揽子扶持政策将从研发生产、市场推广、售后服务和回收利用等各个环节入手,制订产业政策、财政政策、税收政策、投融资政策等。我国还准备设立国家层面的节能与新能源汽车研发与产业化专项,重点支持节能与新能源汽车关键技术研发和技术改造。这将是我国第一次针对一个产业提出一揽子扶持政策。 近期我国对新能源汽车的补贴范围从对公交、公务、市政、邮政等政府采购补贴逐步扩展到对私人购买新能源汽车进行补贴。 2009年1月,国家启动“十城千车” 节能与新能源汽车示范推广试点,计划用3年左右的时间,每年发展10个城市,每个城市推出1000辆新能源汽车,首批列入了13个城市。09年底试点城市由13个扩大到20个,选择5个城市对私人购买节能与新能源汽车给予补贴试点。 2010年5月,政府在全国范围内开展“节能产品惠民工程”,消费者在6月18日之后,每购买一辆节能型汽车,将获得3000元的补贴。6月,出台对于私人购买新能源汽车补贴办法,对满足支持条件的新能源汽车,按3000元/千瓦时给予补助。插电式混合动力乘用车最高补助5万元/辆;纯电动乘用车最高补助6万元/辆。 (2)通过补贴扶持和引导新能源汽车产业链整体的发 展,并重点支持关键环节 新能源汽车的补贴政策通过规定补助范围、对象,并需要满足一系列的支持条件,来引导试点城市建立相关配套设施和示范推广工作。通过《推荐车型目录》和国家标准,来引导申请补助的汽车生产企业及其新能源汽车产品,提高和保证产品性能参数,重点扶持具备一定产能规模和完善售后服务体系,具有自主知识产权的企业。 目前,发改委正在修订《产业结构调整指导目录(2010年本)》,在鼓励类产品中,新增新能源汽车关键零部件。其中包括电池管理系统、电机管理系统、电动汽车驱动电机、电路集成以及充电设备等。 在配套设施方面,国家电网2010年将建设75个电动汽车充电站和6200个充电桩,2015年前将建设1700个充电站。南方电网也宣布2010年将建设超过80座充电站。 在国家和行业标准方面,我国已制定并发布了新能源汽车相关国家标准和行业标准共计42项,其中22项已列为新能源汽车产品准入的专项检验标准。2012年前,我国将基本建立与产业发展和能源规划相适应的节能与新能源汽车及充电设施标准体系。 新能源汽车技术路线:近期以混合动力汽车为重点,未来以纯电动车为主要发展方向 面对纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)等不同的技术选择,根据《节能与新能源汽车产业规划》,我国新能源车发展路线将以纯电动汽车作为主要战略取向,近期以混合动力汽车为重点,大力推广普及节能汽车。考虑到技术发展现状,而将燃料电池电动汽车作为未来长期的发展方向。 经过近10年的自主研发和示范运行,中国在电动车产业技术方面与世界先进水平的差距在大幅度缩小;中国电动车领军企业与国外电动车技术的先行车企正在同一起跑线上成长。小型纯电动乘用车将是3到5年内中国电动车产业发展的主导方向。在“十二五”电动车发展规划中,小型纯电动车将得到充分重视。 动力电池:以锂电池为主要发展方向、以锰酸锂+钛酸锂为正负极搭配方式 动力电池、电机、电控等关键部件成本占电动车整车成本的30%至50%,同时也是新能源汽车的关键核心技术。根据《节能与新能源汽车产业规划》,到2015年,动力电池、电机、电控等关键零部件核心技术实现自主化;到2020年,节能与新能源汽车及关键零部件技术将达到国际先进水平。 在动力电池环节,我国力争突破动力电池瓶颈。到2015年,动力电池系统能量密度达到120瓦时/公斤以上,成本降低至2元/瓦时,循环寿命稳定达到2000次或10年以上。到2020年,动力电池系统能量密度达到200瓦时/公斤以上,成本降低至1.5元/瓦时以下。 目前二次电池包括铅酸电池、镍镉电池、镍氢电池和锂电池等。虽然影响电池性能及决定其相对优势的因素很多,但是比能量是最重要最直观的一个指标。从铅酸电池、镍镉电池、镍氢电池到锂电池,比能量越来越高。与铅酸电池、镍镉电池和镍氢电池比较,锂电池的优势明显,因此作为发展方向的锂电池将会在电动汽车领域广泛应用。我们预计2015年国内新能源汽车动力锂电池的市场规模达到180亿元。到2020年,新能源汽车已经进入普及期,新能源汽车动力锂电池规模将达到2880亿元。市场容量巨大,且增长迅速。 锂电池单元主要由正极、负极、隔膜和电解液四部分组成。正极材料是决定电池性能的关键,目前市场应用的主流正极材料包括钴酸锂、锰酸锂、三原材料和磷酸铁锂,其中锰酸锂和磷酸铁锂可以说是各领风骚。由于磷酸铁锂产品存在一致性、低温性能、高倍率放电性能和成本等问题,因此我们认为未来新能源汽车将主要选择锰酸锂路线。从目前市场主流新能源汽车看,除了比亚迪坚持使用磷酸铁锂电池,其他公司也基本都选择了锰酸锂路线。 在负极材料方面,虽然碳材料一直处于主导地位,但是我们预计钛酸锂的出现将会颠覆行业格局。钛酸锂是一种性能优异的负极材料,由于电位过高,钛酸锂并不适合与磷酸铁锂搭配,反而锰酸锂+钛酸锂体系是较优的一种选择。锰酸锂+钛酸锂体系的优势包括:近乎完美的安全性、使用寿命更长、可以快速充放电、结合锰酸锂具备整体成本优势等。因此我们认为锰酸锂+钛酸锂体系将会是未来正负极材料的主要搭配方式。 电解液约占锂电池成本的15%,电解液中关键材料六氟磷酸锂约占成本一半,目前六氟磷酸锂国产化程度很低,毛利率更高达70%;隔膜是锂电关键材料中技术壁垒最高的一种高附加值材料,占锂电池成本的20%左右,由于技术含量高,目前国内80%的隔膜需要进口。可以预计动力锂电池用隔膜的发展方向是耐高温、多层隔膜、高强度、高保液能力。 驱动电机:我国驱动电机技术进步明显 驱动电机是电动汽车的关键部件,直接影响整车的动力性及经济性。驱动电机主要包括直流电机和交流电机。目前电动汽车广泛使用交流电机,主要包括:异步电机、开关磁阻电机和永磁电机(包括无刷直流电机和永磁同步电机)。其中,异步电机主要应用在纯电动汽车,永磁同步电机主要应用在混合动力汽车中,开关磁阻电机目前主要应用在客车中。 车用电机的发展趋势包括:第一、电机本体永磁化:永磁电机具有高转矩密度、高功率密度、高效率、高可靠性等优点。我国具有世界最为丰富的稀土资源,因此高性能永磁电机是我国车用驱动电机的重要发展方向。第二、电机控制数字化:专用芯片及数字信号处理器的出现,促进了电机控制器的数字化,提高了电机系统的控制精度,有效减小了系统体积。第三、电机系统集成化:通过机电集成和控制器集成,有利于减小驱动系统的重量和体积,可有效降低系统制造成本。 在驱动电机方面,经过“九五”、“十五”、“十一五”国家对电动汽车用电机系统的集中研发和应用,我国已自主开发了满足各类电动汽车需求的驱动电机系统产品,获得了一大批电机系统的相关知识产权,形成具有核心竞争能力的车用驱动电机系统批量生产能力。 目前,我国自主开发的永磁同步电机、交流异步电机和开关磁阻电机已经实现了与国内整车产业化技术配套,电机重量比功率显著提高,电机系统最高效率达到93%以上,系列化产品的功率范围覆盖了200kW以下电动汽车用电机动力需求,各类电机系统的核心指标均达到相同功率等级的国际先进水平。但是与国际先进水平相比,在产品集成度、可靠性和系统应用技术方面,仍存在较大的差距。
太多了,先说正极,钴酸锂,镍酸锂,锰酸锂,磷酸铁锂,还有三元的,这是基本的,还有从这些衍生出来的,手机电池用的是钴酸锂。负极,天然石墨,人工石墨,无定形碳,中间相碳微球,锡基的(氧化物,盐,)硅基的(氧化物,与碳的合金),锑基的,氮基的,铝基的,各种合金,比如说锡--镍--铝现在用的大多数是天然石墨,便宜
259 浏览 5 回答
173 浏览 2 回答
229 浏览 3 回答
92 浏览 6 回答
331 浏览 4 回答
262 浏览 2 回答
315 浏览 3 回答
134 浏览 5 回答
120 浏览 3 回答
338 浏览 6 回答
268 浏览 4 回答
237 浏览 4 回答
226 浏览 5 回答
299 浏览 3 回答
98 浏览 6 回答