给一张图片,判断图片中的人物在做什么,对于人来说通常并不困难。但是,怎么让机器也学会判断呢?从静态的姿态识别,到动态的动作识别,再到将不同情景下的同一个人识别出来,机器已经变得越来越聪明。 1、2D、3D姿态识别 非常强大,很适合入门,通读后再对具体细节进行深究。 还介绍了动作识别:要识别出人物的动作通常需要连续的视频数据进行分析处理,需要采集的特征通常有单帧图像数据的特征和多帧图像数据之间时间上的特征,简单来说就是静态帧数据+ 帧间数据 。 2、DensePose开源了,2D变3D人体姿势实时识别 对其中一种方法(人体姿势实时识别系统DensePose)的直观介绍 3、SkeletonNet:完整的人体三维位姿重建方法 对SkeletonNet模型进行具体介绍 4、人体姿态估计(人体关键点检测)分类与经典方法分析(附GitHub地址 ) 菜鸡要努力 人体姿态估计(Human Pose Estimation)也称为人体关键点检测(Human Keypoints Detection)。 对于人体姿态估计的研究,简要介绍了各种方法。 1、行为识别 人体骨架检测+LSTM yengjie 2、解读:基于动态骨骼的动作识别方法ST-GCN(时空图卷积网络模型) 我是婉君的 3、基于3D关节点的人体动作识别综述 叶落寒蝉 是一篇针对论文的翻译 1、用单张2D图像重构3D场景 zouxy09 2、【深度相机系列三】深度相机原理揭秘--双目立体视觉 计算机视觉life 介绍的很详细 3、双目摄像机测深度原理 西海岸看日出 可以看作是上一篇的精简版 4、 真实场景的双目立体匹配(Stereo Matching)获取深度图详解 给出了一个具体的实践例子