1,。,。,。,。 假如没有重力 重力就是地球对物体吸引而产生的力,正因为有着这个力的存在,我们以至于世界万物才能够生存于这个地球之上。 在这个有着重力的环境下,人们行走、工作在地面,植物生长在地面,并沿着向上的方向拙壮成长。在这种环境下,我们的生活宁静、安祥,但我们假想一下,如果没有重力,那么地球会怎样呢? 有人会说:“如果没有重力,人就会飘在空中。”也有人说:“打破世界跳高记录会易如反掌”。的确,如果没有了重力,世界万物都会飘在空中。假如你在炒菜,那么你那盘菜就别想熟了。因为没有重力,那菜可不会老老实实地呆在锅中呢,即使熟了,也是用极漫长的时间作代价的。 不过没有重力,也挺好的。你看,假如需要高空作业,那没有重力可就即安全又方便了。再想想看那宇宙飞船上,在失重的情况下,要想吃东西,嘴只用一吸便品尝美味佳肴了。 假如世界上真的没有了重力,那可真的是奇妙无穷了。人就像袋鼠一样蹦来蹦去或是飞于空中,畅享天空的辽阔;水一团团地飘在空中,要想吃水,凑上去嘴一张便可;但这鱼儿可就惨了,他们没准要搬家了;咦?如果没有重力,说不定牛顿就不会挨那一下了! 科学真是奇妙无穷,就连科学幻想也趣味百出。我们应热爱科学,做一个热爱学习科学的中学生。 2 ,。,。,。,,。假如失去重力 在生活中,我们每个人,每件物品,以至于一个毫不起眼的绒毛,都受一个力,这个力使一切物体最终落地,这就是地球的神奇,地球它吸引着各种物体而产生了力,这个力就是重力。 牛顿的发现证明了重力的存在,或是说重力无处不在。重力的确很好,熟透的苹果落下来,使人们不用去搬梯子,只是弯弯腰既可。 但有人抱怨从二楼掉下轻者腿摩破,重者制残,假如真失去重力,世界会怎样:汽车飞在空中,不能动;人在空中,不能;人在室内只能游动。 水,生命的象征,如果失去重力,水将停止流动,下游水由于蒸发将干涸。一个人轻而易举起了一个重的东西;如果你爱跳那可不得了,你一跳飞离了地球,那可是人类花了多少年的心血努力才能实现进入太空之梦,一下子变成了现实。 如果失去了重力,我们周围的环境只会更加糟糕,人和各种各样的物体都在空中游着,这真很可怕哟。 综上所述,我们不能失去重力,重力的存在,是我们人类在在球上能够生存的根本。
超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。 然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。 超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。 在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。 在普通导体中会发生什么情况 上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。 超导体会发生什么变化 超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。 超导体 超导体,气体液化问题是19世纪物理学的热点之一。1911年昂内斯发现:汞的电阻在42K左右的低温度时急剧下降,以致完全消失(即零电阻)。1913年他在一篇论文中首次以“超导电性”一词来表达这一现象。由于“对低温下物质性质的研究,并使氦气液化”方面的成就,昂内斯获1913年诺贝尔物理学奖。 直到50年后,人们才获得了突破性的进展,“BCS"理论的提出标志着超导电性理论现代阶段的开始“BCS"理论是由美国物理学家巴丁、库珀和施里弗于1957年首先提出的,并以三位科学家姓名第一个大写字母命名这一理论。这一理论的核心是计算出超导体中存在电子相互吸引从而形成一种共振态,即存在“电子对”。 1962年英国剑桥大学研究生约瑟夫森根据“BCS”理论预言,在薄绝缘层隔开的两种超导材料之间有电流通过,即“电子对”能穿过薄绝缘层(隧道效应);同时还产生一些特殊的现象,如电流通过簿绝缘层无需加电压,倘若加电压,电流反而停止而产生高频振荡。这一超导物理现象称为“约瑟夫森效应”。这一效应在美国的贝尔实验室得到证实。“约瑟夫森效应”有力的支持了“BCS理论”。因此,巴丁、库怕、施里弗荣获1972年诺贝尔物理奖。约瑟夫森则获得1973年度诺贝尔物理奖。 德国物理学家柏诺兹和瑞士物理学家缪勒从1983年开始集中力量研究稀土元素氧化物的超导电性。1986年他们终于发现了一种氧化物材料,其超导转变温度比以往的超导材料高出12度。这一发现导致了超导研究的重大突破,美国、中国、日本等国的科学家纷纷投入研究,很快就发现了在液氮温区(-196C以下)获得超导电性的陶瓷材料,此后不断发现高临界温度的超导材料。这就为超导的应用提供了条件。帕诺兹和缪勒也因此获1987年诺贝尔物理奖。 超导体处于主导地位 柯宝泰 超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。 然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。 超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。 在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。 在普通导体中会发生什么情况 上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。 超导体会发生什么变化 超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。 人们早已知道,随着温度的降低,金属的电阻会减小,但是并不知道在温度接近绝对零度时,电阻会降低到什么程度。为了弄清这个问题,荷兰物理学家昂尼斯(1853~1926)开始对极低温度下金属电阻的研究。1911 年,他在测量低温下水银的电阻时发现,水银的电阻并不像人们预想的那样随着温度的降低连续地减小,而是当温度降到—269℃左右时突然完全消失。以后还发现一些金属或合金,当温度降到某一温度时,电阻也会变为零。这种现象叫做超导现象,能够发生超导现象的物质叫做超导体。物质的电阻变为零时的温度叫做这种物质的超导转变温度或超导临界温度,用TC 表示。物质低于TC 时具有超导性,高于TC 时失去超导性。 超导体的发现,在科学技术上有很大的意义。例如,由于现代生产的发展,对电能的需要迅速增长,有人统计,几乎每隔10 年对电能的需要就会增长一倍。但输电线有电阻,由于电流的热效应,使损失在输送电路上的电能大约超过。如果我们能够找到常温下的超导材料,就可以在发电、送电、电动机等方面大规模地利用超导性能,它将在现代技术的一切领域内引起一场巨大的变革。所以常温超导体的研究,是目前的一个重要课题,即使得不到常温超导体,能寻找到转变温度较高的超导体亦有重大意义。在这方面,我国的研究工作走在世界前列,1989 年已找到TC 达—141℃的超导材料,这是在高临界温度超导体研究方面取得的重大突破。
在一定情况下没有电阻的导体叫做超导体.超导体没有电阻的现象叫超导现象
爱因斯坦的广义相对论预言:引力波的主要性质有:在真空中以光速传播;携带能量和与波源有关的信息;是横波,在远源处为平面波;最低次为四极辐射;辐射强度极弱;物质对引力波吸收效率极低,引力波穿透性极强,地球对引力波几乎是透明的;其偏振特性为两个独立的偏振态等。引力波是波动形式和有限速度传播的引力场。 爱因斯坦虽然在1916年曾预言加速的质量可能有引力波存在,但他提出的引力波与坐标的选取有关,在某一个参考系看来,引力波可能有能量,而换一个参考系可能就没有。因此在提出引力波存在的初期,包括爱因斯坦本人在内的大多数人对引力波都持怀疑态度。1956年,皮拉尼提出一个与坐标系选取无关的引力波定义;1957年,邦迪进而从理论上证明与坐标系选取无关的平面引力波的存在。1959年,邦迪、皮拉尼和罗宾森更进一步证明,静止物体在引力波脉冲作用下会产生运动,于是间接地证明引力波携带能量,并可被探测到。由于引力辐射极其微弱,目前还不能在实验室里发射可供探测的引力波,而大质量天体的激烈运动,比如双星体系公转、中子星自转、超新星爆发,理论预言的黑洞的形成、碰撞和捕获物质等过程,都能辐射较强的引力波。 多年来,各国科学家都在致力于探测引力波,美国马里兰大学的科学家韦伯首创用一根铝棒作为天线进行探测,并声称探测到了不能排除是引力波的信号,但其他科学家都没有得到这一结果,韦伯的结论没有得到公认。现在对引力波的研究方兴未艾,反引力或称反重力研究又提上了日程,这项研究可能获得的成果或许将彻底实现人类实现恒星际航行的梦想,科学家值得为这项研究投入毕生的精力和才华。中国科学家在这方面已经做了有价值的实验和研究。 自从英国科幻小说作者威尔斯描述了“反重力”(能够屏蔽重力影响,使宇宙飞船飞向月球)后,反重力已经成为人类一个多世纪的梦想。如果反重力是确实存在的,它必将改变整个世界。汽车、火车、轮船,所有你能想到的交通系统,都能通过从引力场中获取的能量驱动。这一会改变世界科学界和航空航天界禁忌的反重力研究,目前再次受到人们的关注,因为有消息说世界上最大的飞机制造商波音公司正在探索一些新概念,这些新概念可能在将来某一天彻底改变一个世纪来的推进技术。 波音公司进行的反重力研究概括起来就是该公司一个名为“先进空间推进技术重力研究(Grasp)”的项目。《简氏防务周刊》获得的一份有关文件阐述了波音公司认为该项目获得成功的重大意义。文件中写道:“如果反重力是确实存在的,它必将改变整个航空航天事业。”这种评价可能还不够。如果反重力是确实存在的,它必将改变整个世界。汽车、火车、轮船,所有你能想到的交通系统,都能通过“无推进剂推进”———一种从重力场中获取能量的模式来驱动。 尽管,反重力是人们一个美好的梦想,但是传统科学长期认为,反重力是不可能的。1992年4月,已故的英国索尔福德大学教授、当时担任英国航天防御系统战略项目负责人的布赖恩·扬在伦敦机械工程师学会发表演讲,他在演讲中解释了为什么进行反重力研究与航空航天业乃至世界都有关。“Grasp”简报说明了波音公司为什么必须雇佣俄罗斯材料专家叶夫根尼·波德克列特诺夫的原因。波德克列特诺夫声称发明了可以屏蔽重力影响的装置。 1992年,任职于芬兰坦佩雷技术大学的波德克列特诺夫向一家英国物理学杂志提交了一篇论文,他描述了被置于高速旋转的超导体(极低温度时失去电阻)上面的一个物体如何失去将近2%的重量。这篇论文泄漏给了一家报纸。一来因为它涉及禁忌的“反重力”概念,二来因为它在主流物理界掀起了轩然大波,波德克列特诺夫被学校开除了。但这位俄罗斯人的研究吸引了美国国家航空航天局的注意,该局早已同亨茨维尔亚拉巴马大学的一位研究员有联系,这位研究员宣称她能制造出一种类重力场,能够利用高速旋转超导体排斥或吸引物体。 在20世纪90年代中期,位于亚拉巴马州的美国国家航空航天局马歇尔航天中心在重复波德克列特诺夫的实验时失败了。但是,该中心承认,不知道这位俄罗斯人制作超导盘的独特方法,它在很大程度上是在盲目地进行研究。 几年前,美国国家航空航天局向俄亥俄州哥伦布超导元件公司支付60万美元,制造波德克列特诺夫曾使用过的装置,并且聘请了这位俄罗斯人做顾问。这项实验虽然被延期了,但该项实验的负责人罗恩·科措尔自信实验可以完成。现任职于莫斯科化学研究中心的波德克列特诺夫,进一步发展了自己的思想。他同意大利科学家乔瓦尼·莫达内塞联合发表了一篇论文,详细介绍了一种“冲量重力发生器”的研究工作,它能对所有物体产生一种斥力。该设备使用一个强放电源“发射器”和一个超导“发射器”,制造出了一种“重力冲量”。波德克列特诺夫说:“时间很短,沿着放电的线路以极快的速度(实际上是瞬时)进行传播,经过许多不同物体,没有任何显著的能量损失。”他说,实验结果是对光束击中的任何物体都产生了推力作用,大小同物体质量成正比。波德克列特诺夫在调整一个激光瞄准装置时说,他的实验装置已经显示有能力击倒1公里外的物体,他声称,这一装置用同样的能量可以击倒200公里外的物体。正是波德克列特诺夫的“冲量重力发生器”的研究工作引起了波音公司的注意。在那份“Grasp”简报中,波音公司描述了该装置发出的光束如何不受任何电磁屏蔽影响,可以穿透任何物体而达到目标。
计算智能原理对创新模式的探索摘要:科技创新能力培养是本科生培养的一个重要方面,在国家大力提倡科技创新的背景下,加强大学生科技创新具有重要的意义。培养有创新能力的人才是高等学校建设的中心。本文基于计算智能原理与方法,结合指导的国家大学生创新项目的实践,就建设高效的创新团队的方法进行了初探。关键词:计算智能;科研训练;创新团队0引言目前,我们要提高自主创新能力,建设创新型国家。高等教育担负着培养创新型人才的重要责任。学生科技活动对于提高学生科技创新能力,培养拔尖创新型人才具有重要意义。而构建了一批锐意进取、大胆创新的大学生创新团队,对提高学生的创新能力和团队协作能力就显得特别的重要。目前就团队理论的研究还有待与深入,用计算智能的基本理论原理与方法来指导建设大学生创新项目团队,是一种跨学科研究的新尝试。1计算智能的基本理论与方法简介计算智能由美国学者James 年首次给出其定义,广义的讲就是借鉴仿生学思想,基于生物体系的生物进化、细胞免疫、神经细胞网络等某些机制,用数学语言抽象描述的计算方法。是基于数值计算和结构演化的智能,是智能理论发展的高级阶段。计算智能的主要方法有:人工神经网络、模糊系统、进化计算等。模糊计算模糊系统以模糊集合理论、模糊逻辑推理为基础,它试图从一个较高的层次模拟人脑表示和求解不精确知识的能力。在模糊系统中,知识是以规则的形式存储的,它采用一组模糊IF—THEN规则来描述对象的特性,并通过模糊逻辑推理来完成对不确定性问题的求解。模糊系统善于描述利用学科领域的知识,具有较强的推理能力。人工神经网络人工神经网络系统是由大量简单的处理单元,即神经元广泛地连接而形成的复杂网络系统。在人工神经网络中,计算是通过数据在网络中的流动来完成的。在数据的流动过程中,每个神经元从与其连接的神经元处接收输入数据流,对其进行处理以后,再将结果以输出数据流的形式传送到与其连接的其它神经元中去。网络的拓扑结构和各神经元之间的连接权值(Wi)是由相应的学习算法来确定的。算法不断地调整网络的结构和神经元之间的连接权值,一直到神经网络产生所需要的输出为止。通过这个学习过程,人工神经网络可以不断地从环境中自动地获取知识,并将这些知识以网络结构和连接权值的形式存储于网络之中。人工神经网络具有良好的自学习、自适应和自组织能力,以及人规模并行、分布式信息存储和处理等特点,这使得它非常适合于处理那些需要同时考虑多个因素的、不完整的、不准确的信息处理问题。进化计算自然界在几十亿年的进化过程中,生物体己经形成了一种优化自身结构的内在机制,它们能够不断地从环境中学习,以适应不断变化的环境。对于大多数生物体,这个过程是通过自然选择和有性生殖来完成的。自然选择决定了群体中哪些个体能够存活并繁殖:有性生殖保证了后代基因的混合与重组。进化计算受这种自然界进化过程的启发,它从模拟自然界的生物进化过程入手,从基因的层次探寻人类某些智能行为发展和进化的规律,以解决智能系统如何从环境中进行学习的问题。2计算智能原理在创新团队实践中的启发从系统论的视角看,创新团队的建设问题是一个复杂系统的优化和控制问题。复杂系统具有:1)自适应性/自组织性(self-adaptive/self-organization)。2)不确定性(uncertainty)。3)涌现性(emergence)。4)预决性(Finality)。5)演化(Evolution)。6)开放性(opening)。而计算智能的这些方法具有自学习、自组织、自适应的特征,创新团队的建设是具有一定的研究价值的。在专家指导下的自学习、自组织、自适应计算智能特点提到,模糊系统善于描述和利用经验知识;神经网络善于直接从数据中进行学习,把人工神经网络与专家系统结合起来,建立一个混合的系统,要比各自单一地工作更为有利。创新团队在相关专家的指导下,突出学生自由组建、自主管理、自我服务的特色。在明确团队任务的前提下对团队人数、组成人员条件及内部控制制度做些原则性的规定,赋予团队负责人充分的权力如决定团队成员构成、支配内部经费、对团队成员进行分工和考核等,保证其对团队工作直接有效的管理。合作与竞争意识计算智能特点提到,进化计算善于求解复杂的全局最优问题,具有极强的稳健性和整体优化性。种群的进化过程就是优胜劣汰的自然选择过程。团队建设的基石是合作与竞争理论。Deutsch早就指出,如果人们处于散乱的、互不相干的独立竞争关系,认为双方目标之间没有关系,那么,在资源有限的情况下,人们会表现得更为自私,彼此之间的利益存在冲突,这种关系会引起组织内耗和人际关系紧张,最终导致低生产率和低创造率。Dcutsch认为,应该使人们在组织中具有共同目标,在共同目标下合作共事。具有合作关系的人们会相互尊重、共享信息和资源,他们会将他人的进步看成对自己的促进,并交流意见和取长补短,现代科学的进步表明,今天每一项科技成果的取得,差不多都是多学科协同作战的结果。大学科研团队的建设就是要很好地贯彻这种理念,在适度的竞争与合作之间构建这种理念。融入计算智能思想的协同学习团队人们在研究人类智能行为中发现,大部分人类活动都涉及多个人构成的社会团体,大型复杂问题的求解需要多人或组织协作完成,师生之间的关系也更强调合作和共同发展。随着计算机网络、计算机通信和并发程序设计的发展,分布式人工智能逐渐成为人工智能领域的一个新的研究热点,它是以智能Agent概念为研究核心。虽然每个智能Agent都是主动地、自治地工作,多个智能Agent在同一环境中协同工作,协同的手段是相互通信。计算智能与分布式人工智能结合则是研究在逻辑上或物理上分散的智能动作如何协调它们的知识、技能和规划,求解单目标或多目标问题,因此这也为设计和建立大型复杂的智能系统或计算机支持的协同学习工作提供了有效途径。选好综合能力强的团队带头人计算智能特点提到,对复杂系统的控制,要用处理各种不确定的智能方法,这就要求团队带头人有处理复杂问题的综合能力。科技创新团队应是由不同类型的人为实现特定的目标组成的群体。激励和聚合大家的力量,负责内部的计划、组织、指挥、协调和控制等方面组织工作,必须要有一位核心人物,即学术带头人。优秀的学术带头人是高校科技创新团队必备的要素。团队的带头人处于沟通、协调团队内外的中心位置,是团队其他成员获得工作方向、具体任务、工作目标等信息的主要来源,是团队维持士气、活力、凝聚力的中心环节和纽带,在很大程度上决定了整个团队的学术水平、科研风格和文化氛围。同时对团队整体加强协调与组织,提高团队的内部凝聚力。加强交流,资源公享计算智能特点提到自适应,进化机制,是建立在信息传输基础上的。团队成员之间进而形成了彼此间紧密合作、资源共享的伙伴关系。通过彼此间的紧密合作,使团队成员不再是一个独立的个体,而是共同承担责任、积极面对挑战的一个集体。在这个集体中,团队成员的合力要远远大于每个成员能力简单相加的总和。因此,在科研团队的建设中,良好的沟通渠道能促进成员之间的团结合作,使组织中的每个成员都为组织的发展倾尽所有。团队成员之间进而形成了彼此间紧密合作、资源共享的伙伴关系。通过彼此间的紧密合作,使团队成员不再是一个独立的个体,而是共同承担责任、积极面对挑战的一个集体。在这个集体中,团队成员的合力要远远大于每个成员能力简单相加的总和。因此,在科研团队的建设中,良好的沟通渠道能促进成员之间的团结合作,使组织中的每个成员都为组织的发展倾尽所有。配备优势互补的成员在计算智能机制的调控,非线性复杂系统有涌现性特征。所谓涌现性,就是肩负不同角色的组件间通过多种交互模式、按局部或全局的行为规则进行交互,组件类型与状态、组件之间的交互以及系统行为随时间不断改变,系统中子系统或基本单元之间的局部交互,经过一定的时间之后在整体上演化出一些独特的、新的性质,形成某些模式,这便体现为涌现性。子系统之间的相互作用,可导致产生与单个子系统行为显著不同的宏观整体性质。涌现性也体现为一种质变,主体之间的相互作用开始后,系统能自组织、自协调、自加强,并随之扩大,发展,最后发生质变,即发生了涌现。3结束语计算智能理论对处理复杂系统的优化和控制问题是有效,计算智能原理在创新团队实践中的启发是多方面的。目前就团队理论的研究还有待与深入,利用计算智能原理与方法来指导建设大学生创新项目团队,是一种新的思路。
超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。 然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。 超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。 在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。 在普通导体中会发生什么情况 上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。 超导体会发生什么变化 超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。 ---------------------------------------------超导体 超导体,气体液化问题是19世纪物理学的热点之一。1911年昂内斯发现:汞的电阻在42K左右的低温度时急剧下降,以致完全消失(即零电阻)。1913年他在一篇论文中首次以“超导电性”一词来表达这一现象。由于“对低温下物质性质的研究,并使氦气液化”方面的成就,昂内斯获1913年诺贝尔物理学奖。 直到50年后,人们才获得了突破性的进展,“BCS"理论的提出标志着超导电性理论现代阶段的开始“BCS"理论是由美国物理学家巴丁、库珀和施里弗于1957年首先提出的,并以三位科学家姓名第一个大写字母命名这一理论。这一理论的核心是计算出超导体中存在电子相互吸引从而形成一种共振态,即存在“电子对”。 1962年英国剑桥大学研究生约瑟夫森根据“BCS”理论预言,在薄绝缘层隔开的两种超导材料之间有电流通过,即“电子对”能穿过薄绝缘层(隧道效应);同时还产生一些特殊的现象,如电流通过簿绝缘层无需加电压,倘若加电压,电流反而停止而产生高频振荡。这一超导物理现象称为“约瑟夫森效应”。这一效应在美国的贝尔实验室得到证实。“约瑟夫森效应”有力的支持了“BCS理论”。因此,巴丁、库怕、施里弗荣获1972年诺贝尔物理奖。约瑟夫森则获得1973年度诺贝尔物理奖。 德国物理学家柏诺兹和瑞士物理学家缪勒从1983年开始集中力量研究稀土元素氧化物的超导电性。1986年他们终于发现了一种氧化物材料,其超导转变温度比以往的超导材料高出12度。这一发现导致了超导研究的重大突破,美国、中国、日本等国的科学家纷纷投入研究,很快就发现了在液氮温区(-196C以下)获得超导电性的陶瓷材料,此后不断发现高临界温度的超导材料。这就为超导的应用提供了条件。帕诺兹和缪勒也因此获1987年诺贝尔物理奖。 超导体处于主导地位 柯宝泰 超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。 然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。 超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。 在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。 在普通导体中会发生什么情况 上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。 超导体会发生什么变化 超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。 人们早已知道,随着温度的降低,金属的电阻会减小,但是并不知道在温度接近绝对零度时,电阻会降低到什么程度。为了弄清这个问题,荷兰物理学家昂尼斯(1853~1926)开始对极低温度下金属电阻的研究。1911 年,他在测量低温下水银的电阻时发现,水银的电阻并不像人们预想的那样随着温度的降低连续地减小,而是当温度降到—269℃左右时突然完全消失。以后还发现一些金属或合金,当温度降到某一温度时,电阻也会变为零。这种现象叫做超导现象,能够发生超导现象的物质叫做超导体。物质的电阻变为零时的温度叫做这种物质的超导转变温度或超导临界温度,用TC 表示。物质低于TC 时具有超导性,高于TC 时失去超导性。 超导体的发现,在科学技术上有很大的意义。例如,由于现代生产的发展,对电能的需要迅速增长,有人统计,几乎每隔10 年对电能的需要就会增长一倍。但输电线有电阻,由于电流的热效应,使损失在输送电路上的电能大约超过。如果我们能够找到常温下的超导材料,就可以在发电、送电、电动机等方面大规模地利用超导性能,它将在现代技术的一切领域内引起一场巨大的变革。所以常温超导体的研究,是目前的一个重要课题,即使得不到常温超导体,能寻找到转变温度较高的超导体亦有重大意义。在这方面,我国的研究工作走在世界前列,1989 年已找到TC 达—141℃的超导材料,这是在高临界温度超导体研究方面取得的重大突破。 -------------------------------------------------------------------------------------------------------------------------------------------------呵呵!!!!!!!!!!!!!!!!
2018《自然》杂志年度十大人物评选出炉,居十大人物之首的是22岁中国天才科学家曹原。2018年3月5日,《自然》背靠背发布了两篇以曹原为第一作者关于“魔角”石墨烯的重磅论文。这名中科大少年班的毕业生、美国麻省理工学院的博士生发现当两层平行石墨烯堆成约°的微妙角度,就会产生神奇的超导效应。这一发现轰动国际学界,直接开辟了凝聚态物理的一块新领域。如今,正有无数学者试图重复、拓展他的研究。《自然》杂志是全球最顶尖的科学杂志,能在自然发布论文,是很多国内外科学家一生的梦想,而这次2018的年度评选把这位出生在1995年的少年科学家曹原的发现放在年度论文之首,足以想见科学界对这次发现的重视程度。这期《自然》的封面就是以“魔角”石墨烯的概念为原型设计的。“魔角”石墨烯研究最让人兴奋的地方之一,是它对高温超导体的理论意义,虽然它也是在接近绝对0度的状态下做的,但它以极为简单的形式模拟了高温超导体的特性。对高温超导体的研究有里程碑式的意义。高温超导体一般是指超导的临界温度比液氮温度(零下196度)要高的物体,相对的,超导临界温度从绝对0度到零下196度之间的物体,是低温超导体。人们现在对低温超导体的研究比较清楚了,但对高温超导体的超导物理原理以及相关的凝聚态物理,仍然是物理学中不为人知的地带。而“魔角”石墨烯的研究,可能打破这种现状,成为常温超导体的研究的里程碑。1911年荷兰科学家卡末林发现了汞的超导电性,从而发现超导现象,仅仅两年后的1913年就获得了诺贝尔奖。并成为低温物理学的奠基人。“魔角”石墨烯的研究,再次证明了在超导体领域的任何研究,都可能牵动整个自然科学的神经。那常温超导体到底有什么意义呢?简单来说,凡是用到电的地方,它都有划时代的意义,而当超导体实现常温超导,他的应用注意渗入到生活的方方面面。指尖科技说和你一起盘点: 1.超导电器。超导体没有电阻,会极大推动现有电子技术的使用。我们日常的应用电子技术,都是基于有电阻的电路,由于电阻产生的电的消耗是极为巨大的,人们为了电阻产生的散热问题,投入了无数资源。电脑会变成超导计算机,想象你的电脑没有电阻,不再需要散热,电脑可以更轻薄。使用超导晶体管的集成电路,电脑的速度直接可以有几十几百倍的提升;用电的效率更高,家里的用电量就直接降低了,灯泡却更亮了,电动车跑的更快了,电器的使用变得更加方便,更多的精细电元件可以使用到我们的生活中。据说现在已经有很多公司在研究超导计算机和量子计算机。2.量子计算机。现在已经被研制出来的两台量子计算机,一台是基于电磁激光技术,一台是基于超导微波技术。其中IBM公司的基于超导微波技术的量子计算机已经让人们看到了超导体在计算机领域的可行性。3.超导发电。目前,超导发电机有两种含义。一种含义是将普通发电机的铜绕组换成超导体绕组,以提高电流密度和磁场强度,具有发电容量大、体积小、重量轻、电抗小、效率高的优势。 另一种含义是指超导磁流体发电机,磁流体发电机具有效率高、发电容量大等优点,但传统磁体在发电过程中会产生很大的损耗,而超导磁体自身损耗小,可以弥补这一不足。发电损失降到最低,也可能会导致放发电变得更加容易,可能我们身边很多能源都可以用做发电元件提供日常用电,如太阳能、运动能。4.超导输电:由超导材料制作的超导电线和超导变压器,可以把电力几乎无损耗地输送给用户。据统计,用铜或铝导线输电,约有15%的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。5.磁悬浮交通。超导磁悬浮列车:利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。磁悬浮汽车:这种汽车据说已经被发明出来,但如果超导技术成熟,即可进入实用阶段。磁悬浮轮胎,有报道说磁悬浮轮胎的原型已经被一位中国小伙发明,具有现在轮胎所不具有的高性能特性。还有磁悬浮滑板,可能会代替我们日常行走。6.磁悬浮机械。把磁悬浮特性应用到在机械研发上,可使重要元件没有摩擦力,机械的制动效率和速度会大大增加,能够做到现有机械做不到的很多功能。7.磁悬浮建筑。磁悬浮技术可以让人类更加高效的利用空间,也许将来人类生活在空中就不再是梦想。当生活用品用上磁悬浮的技术,我们的生活会变得无比的便利。8.超导医疗。据说医疗行业现在已经有了超导磁力共振仪,可以对很多重要疾病进行诊断。9.核聚变反应堆“磁封闭体”:核聚变反应时,内部温度高达1亿~2亿摄氏度,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。由于核聚变原料的广泛性,能源问题有望就被彻底解决。即使远距离的太空旅行也会变得有可能。10.超导重力模拟。太空飞船中是没有重力的,这导致太空人在太空船中的运动受到很大限制,如果可以在太空船上也如履平地,那对太空人的作业甚至对在太空船上生活,都有非常重要的意义。通过常温超导体的作用力,可能可以模拟这种重力作用。可以遇见一旦常温超导体技术成熟,肯定会有一场超级技术革命,从此整个世界都会改变一个模样。欢迎关注指尖科技说(公众号),如果有其他设想也欢迎您留言评论。
196 浏览 6 回答
189 浏览 7 回答
202 浏览 3 回答
145 浏览 3 回答
300 浏览 5 回答
142 浏览 4 回答
119 浏览 4 回答
294 浏览 3 回答
217 浏览 2 回答
211 浏览 3 回答
227 浏览 3 回答
180 浏览 2 回答
121 浏览 6 回答
181 浏览 5 回答
126 浏览 8 回答