如何写好数学教育论文华南师范大学数学系 何小亚一、数学教育论文的基本结构标题(论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)作者名(单位名、省、市、邮政编码)摘要:[ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]关键词:(关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)引言(开头语)1. 选题的原因和重要性。2. 对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。3. 本课题研究的目的、方法、计划。4. 本课题研究的意义和价值。几种常见的开头方法:1.内容范围开头法,即说明本文要论述的内容范围;2.问题开头法,即以数学问题或研究对象所存在的问题的方式开头;3.设问开头法,即以设问的形式把论文要论述的中心内容表达出来;4.目的开头法,即直接把论文要达到的目的告诉读者;5.背景开头法,即阐述所研究课题的历史背景;6.结论开头法,即直接阐述论文的的主要结论。正文1 …………………………2 …………………结论与讨论(结束语)结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。下列情况可以省略结论部分:1. 前言部分已对结论进行了概括;2. 结论已不言自明;3. 验证性的论文;4. 商榷、反驳、补充性的论文。附录附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。参考文献参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。引用文献为期刊,可仿下面的例子书写:[1] 何小亚. 数学应用题认知障碍的分析[J].上海教育科研,2001,6:41-43.[5] 何小亚. 建构良好的数学认知结构的教学策略[J].数学教育学报. 2002,11(1):25.引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:[2] 赵振威,黄熙宗,范叙保,等. 中学数学解题研究[M]. 江苏:江苏教育出版社,1998. 96-104.引用文献为报纸,可仿下例书写:[8] 谢希德. 创造学习的新思路[N]. 人民日报,1998—12—25(10)上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。一、问题的提出(背景、问题、你要研究什么问题……)二、术语界定(术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)三、研究的现状(综述同行(相关文献)的研究情况)(谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行.。四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)五、研究方法(你的方法属文献研究、比较研究、定性研究)六、研究结果就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。七、研究结论(根据“五、研究结果”得出的结论)八、研究展望(研究的不足/存在的问题/进一步值得研究的问题)二、数学教育论文的选题1.学习研究数学教育文献数学教育类期刊Educational Studies in Mathematics(荷兰);Journal for Research in Mathematics Education(美);Mathematics Teaching(英);Mathematics Teacher(美);《课程. 教材. 教法》(人民教育出版社)《数学教育学报》(天津师范大学等)《数学通报》(中国数学会,北京师范大学);《数学教学》(华东师范大学);《中学数学》(湖北大学);《中学数学教学参考》(陕西师范大学);《中学数学研究》(华南师范大学)。2.把握数学教育研究的新动向及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。3.研究课程标准和新教材九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材4.研究学生学习数学的过程和教学方法5.研究初等数学问题对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。三、注意事项1.结合自己的兴趣特长选择研究课题2.注意文献资料的取舍围绕课题选择文献资料,选择的材料应具有典型性(代表性)、实践性、理论性和新颖性3. 构思与布局在总体构思论文的框架结构时,要注意从整体上思考如何提出问题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。4. 修改和定稿初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。5. 注意创新论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。6.不容易被刊用的稿件的特点(1) 论述的经验、方法是众所周知的;(2) 所列举的数据有为自己评功摆好的嫌疑;(3) 选用的例证陈旧;(4) 仅仅是例证的堆砌,缺少深刻的理论分析;(5) 概念不清,逻辑推理出错;(6) 结论的推导冗长而应用面狭窄;(7) 课题过大,设计面过宽,讨论问题面面俱到,但不深入;(8) 文章过长(超过5000字)。附件四:研究课题举例一、一般性的研究课题1. 中学数学课程标准的分析研究2. 关于高考数学命题及答卷的研究3. 数学开放题研究4. 数学应用题研究5. 优秀数学教师的教育思想及教学艺术评析6. 数学教学改革实验研究7. 数学差生的成因与教学对策8. 学生数学能力评价研究9. 数学教育中的素质教育内涵10. 中学数学教学与学生创新意识培养11. 中学数学教学与学生应用意识培养12. 数学课程评价的理论与实践13. 数学语言教学研究14. 数学思想方法的教学研究15. 中学数学作业处理16. 运用数学方法论指导数学教学17. 中学生数学阅读能力的调查研究18. 中学生数学语言能力的调查研究19. 数学学习方式的调查研究20. 数学交流能力的调查研究二、 高中数学新课程教学方面的研究课题(一)在新课程理念下对原有内容的教学研究1. 函数教学研究2. 向量教学研究3. 立体几何教学研究4. 解析几何教学研究5. 导数及其应用教学研究6. 概率与统计的教学研究7. 不等式教学研究8. 三角恒等变换教学研究(二)对新增内容的教学研究9. 算法教学研究10. 统计案例教学研究11. 框图、推理与证明教学研究12. 选修系列3教学研究13. 选修系列4教学研究(三)双基与能力教学研究14. 新课程理念下高中数学双基教学设计研究15. 关于培养学生抽象、概括能力的研究16. 关于合情推理与演绎推理在培养学生思维能力中的作用的研究17. 数学新课程实施中学生自主学习的研究18. 数学教学中培养学生自我监控能力的研究19. 关于《标准》中课程内容与要求的科学性、可行性的研究20. 数学文化对于促进学生数学学习的研究21. 数学教学中渗透数学探究、研究性学习的研究三、高中数学新课程的评价课题1. 对学生数学学习过程评价的研究2. 体现新课程理念的模块终结性评价工具与方法的开发3. 对选修系列3、选修系列4读书报告的评价4. 对数学探究、数学建模的评价5. 高中新数学课程课堂教学评价6. 高中数学教师专业化发展评价7. 数学新课程理念下的高考命题研究8. 数学教学中情感、态度、价值观的评价9. 关于过程性评价与终结性评价有机结合的研究四、高中数学新课程的信息技术研究课题1. 信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用2. 网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)3. 信息技术与研究性学习的融合4. 运用信息技术手段,改变学生学习方式(结合具体内容研究)5. 信息技术对评价的形式与内容带来的影响6. 以信息技术为主要手段的数学课程和教学资源库的建立7. 信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进8. 运用信息技术手段,展示数学知识的发生和发展过程的案例研究9. 信息技术与数学课程内容整合的案例开发五、高中数学新课程的课程资源研究课题1. 算法的背景与实例的收集与积累2. 概率与统计的背景与实例的收集与积累3. 导数及其应用的背景与实例的收集与积累4. 关于高中数学选修系列3课程资源的开发与积累5. 关于高中数学选修系列4课程资源的开发与积累6. 现行高中数学新教材的比较研究7. 数学新课程资源的拓广与应用8. 网上数学资源的拓广与利用9. 数学教学软件的研制与开发10. 数学教学资源的传播与信息共享六、高中数学新课程的研究性学习(数学建模、数学探究)1. 如何指导学生选择数学探究、数学建模的课题2. 数学探究、数学建模活动与课堂教学的关系研究3. 研究性学习对培养学生能力的作用中学数学教材、教学研究的问题1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。3.统计与概率内容的系统设计及案例交流。4.课题学习的系统设计及案例交流。5.整理与复习的系统设计及案例交流。6.几何内容的系统设计及案例交流。7.发展学生推理能力的系统设计及案例交流。8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。9.信息技术对课程内容选择、呈现以及教师专业发展的影响。10.如何体现数学的文化价值,不只局限于数学史。11.教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)12.教材怎样才能更好地体现数学的特点及学生的认知特点。13.建立数学模型与数学的双基教学。14.如何处理教材“留白”和学生自学(阅读)之间的关系。15.教材“留白”与教师发展空间之间的关系。16.对评价的思考与实践。附二:教学设计模板课题名称:×××××××教学年级:×年级设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)一、教学内容分析1.教学主要内容2.教材编写特点本节课内容在单元中的地位,本节课教材编写的意图及特点等。3.教材内容的数学核心思想4.我的思考下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。二、学生分析1.学生已有知识基础(包括知识技能,也包括方法)2.学生已有生活经验和学习该内容的经验3.学生学习该内容可能的困难4.学生学习的兴趣、学习方式和学法分析5.我的思考:下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。调研中可以将学生测验、访谈、小组观察等结合起来。三、学习目标(以学生为主语)1. 知识与技能2. 过程与方法(数学思考、解决问题)3. 情感态度价值观说明:1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。四、教学活动教学活动就是为学习目标的实现所设计的活动。包括1.活动内容2.活动的组织与实施说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。3.活动的设计意图说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。4. 活动的时间分配预设说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。可以参考下面的表格形式,也可以用文档的形式。活动内容 活动的组织与实施(含教师活动和学生活动) 设计意图 时间分配五、教学效果评价目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。以下几点供教师思考:(1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。(2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?(3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。(4) 教学是需要设计的,最后达到寓教于“无形”之中。(5) 设计应该考虑单元或更大的范围。