数理逻辑的应用
1 逻辑运算 逻辑运算又称布尔运算,它是用数学的方法解决或研究逻辑问题,即用离散的符号“1”和“0”表示逻辑中的“真”和“假”再加上一套与之相关的“与”、“或”、“非”为运算基础的逻辑运算规则解决实际逻辑问题的方法,从而实现复杂逻辑运算到简单的数值计算的转化。
尽管互联网的查询系统原理各不相同,但使用与(&)、或(||)、非(-)通配符的查词方法却是一致的,这便是逻辑运算的最好例子。下面我们就逻辑运算在电路设计中的运用加以探讨:
某公司王某欲搬入新房,搬迁前需要完成电路的设计安装,由于该房深处闹市,四周楼房林立,严重影响了客厅的采光,于是王某想设计一个电路,要求客厅四盏灯由一个开关控制,开关按下一次亮一盏灯,再按一下亮两盏,以此类推,直到按下第五次时所有灯熄灭。假设四个灯依次为A、B、C、D,灯亮为1,灯灭为0,开关有脉冲输入为1,否则为0,则根据题意可得真值表(如图1)
设第n号灯的上一状态为Nn,第n+1号灯现在在的状态为Nn+1,脉冲输入状态为M,则有:
Nn+1=Nn∧M(N0与M的且运算)
其中Nn=NA∧NB...∧Nn-1灯亮的条件为(A∧┐B∧┐C∧┐D)∨(A∧B∧┐C∧┐D)∨(A∧B∧C∧┐D)∨(A∧B∧C∧D)
如B灯亮的条件是A灯亮并且有脉冲输入,C灯亮的条件是AB都亮并且有脉冲输入。该电路功能由一个与门电路和一个计数触发器连接即可完成,当开关第5次输入后计数器输出信号置0,灯全部关闭,此时设备全部复位。如图2。
2 范式理论 范式是逻辑运算符号化表示的一种标准表达形式,根据这种方法,把同一类型中尽可能出现的命题变相以及具有完整功能的符号化内容通过合、析取的方式联合在一起,而不改变其逻辑功能。
甲、乙、丙、丁四个人有且只有两个人参加围棋比赛。关于谁参加比赛,下列四个判断都是正确的:
(1)甲和乙只有一人参加比赛。
(2)丙参加,丁必参加。
(3)乙或丁至多参加一人。
(4)丁不参加,甲也不会参加。
请推断出哪两个人参加围棋比赛。
设a:甲参加了比赛。
b:乙参加了比赛。
c:丙参加了比赛。
d:丁参加了比赛。
(1) (a∧┐b)∨(┐a∧b)
(2) c→d
(3) ┐(b∧d)
(4) ┐d→ ┐a
于是,
((a∧┐b)∨(┐a∧b))∧(c→d)∧(┐(b∧d))∧(┐d→ ┐a)
Û(a∧┐b∧┐c∧d)∨(a∧┐b∧d)∨(┐a∧b∧┐c∧┐d)
根据题意条件,有且仅有两人参赛,
故┐a∧b∧┐c∧┐d为0,所以
(a∧┐b∧┐c∧d)∨(a∧┐b∧d)为1,
即甲和丁参加了比赛。
又如在某次研讨会的中间休息时间,3名与会者根据王教授的口音对他是哪个省市的人进行了判断:
甲说王教授不是苏州人,是上海人。
乙说王教授不是上海人,是苏州人。
丙说王教授既不是上海人,也不是杭州人。
听完以上3人的判断后,王教授笑着说,他们3人中有一人说的全对,有一人说对了一半,另一人说的全不对。试用逻辑演算法分析王教授到底是哪里人?
设命题 p:王教授是苏州人。
q:王教授是上海人。
r:王教授是杭州人。
显然p,q,r中有且只有一个真命题。
甲的判断为A1=┐p∧q
乙的判断为A2=p∧┐q
丙的判断为A3=┐q∧┐r
那么,
甲的判断全对B1=A1=┐p∧q
甲的判断对一半B2=(┐p∧┐q)∨(p∧q)
甲的判断全错 B3=p∧┐q
乙的判断全对 C1=A2=p∧┐q
乙的判断对一半C2=(p∧q)∨(┐p∧┐q)
乙的判断全错 C3=┐p∧q
丙的判断全对 D1=A3=┐q∧┐r
丙的判断对一半D2=(q∧┐r)∨(┐q∧r)
丙的判断全错D3=q∧r
由王教授所得析取范式:
E = (B1∧C2∧D3)∨(B1∧C3∧D2)∨(B2∧C1∧D3)∨(B2∧C3∧D1)∨(B2∨C1∧D2)∨(B3∧C2∧D1) 为真命题。
经过演算化为主析取范式后后,可得
E Û (┐p∧q∧┐r)∨(p∧┐q∧r)
由题设,王教授不能既是上海人,又是杭州人,因而p,r中必有一个假命题,即p∧┐q∧rÛ0,
于是
E Û ┐p∧q∧┐r
为真命题,因而必有p,r为假命题,q为真命题,即甲说的全对,丙说对了一半,而乙全说错了,王教授是上海人。
3等值演算
等值演算是指利用逻辑恒等式、代入规则、替换规则和对偶原理对命题公式进行推理、演算,等值演算的目的在于化简复杂的命题公式,从而提取出于命题等价的核心要素,便于利用。
以下是《现代社会更需要专才还是通才》辩论记录:
正方:对方辩友,既然您都说了专才是有缺陷的,难道你还认为专才比通才更需要吗?既然您仍然认为专才那么重要,那么我们还要通才干什么,吃饭吗?
反方:对方辩友啊我们说通才比专才更需要,没说通才不需要啊!
在这短短而又激烈的辩论片段中反方辩手显然是找到了有力的反驳切入点,那么这个切入点是什么呢,试着作一下分析:
P:P代表专才比通才更需要是错误的;
Q:Q表示通才没用。
那么正方的意思可以表示为P∧(┐P→Q)
根据蕴含等值式(A→BÛ┐A∨B)和吸收律(A∧(A∨B)ÛA)化简有P∧(┐P→Q)ÛP∧(P∨Q)ÛP
化简后得到P,P就是P∧(┐P→Q)的要点,P和P∧(┐P→Q)得真值是一样的,因而反方根据P(切入点)快速的做出反驳,“我们并没用说通才不需要”,显然得出这样的结论是经过逻辑思考的。
4 逻辑推理
“逻辑推理是从前提推论出结论的思维过程”①(《离散数学(第四版)》page22第节推理理论耿素云屈婉玲张立昂著清华大学出版社),它是指在逻辑推理的过程中通过不断的前提引入,等值与置换等,运用逻辑推理的相关推理理论,得出未知(蕴含)结果的一种方法。逻辑推理广泛的应用于人工智能,案件的侦探与审理,人事科研和日常生活的各方各面。以下将从案件侦探方面体现逻辑的推理基本应用。
一次警方接到报警,在某胡同发生严重的刑事案件,当警方及时赶到犯罪现场时有5人死亡,仅剩甲、乙二人仍在殊死搏斗,审讯时甲乙双方都指责对方是罪犯,自己是受害者,搏斗时出于自卫,警方根据证据最终判断有以下事实:
A:甲乙二人必有一人是罪犯,一人是受害者;
B:如果甲是出于自卫,则必定有伤;
C:甲没有受伤
推道谁是罪犯。当然这道题是一眼便知的,但是还是我们试着有逻辑推理的做以下分析:
设:p:甲是自卫;
q:甲是罪犯;
r:甲受伤。
前提p→r ,┐q→p,┐r。
解析:
(1)┐r; 前提引入
(2)p→r; 前提引入
(3)┐r→┐p; (2)拒取式
(4)┐p;
(5)┐q→p; 前提引入
(6)┐p→q; (5)拒取式
(7)q. (4)(6)假言推理故甲为罪犯。
参考书目
[1]耿素云屈婉玲张立昂离散数学(第四版)[M] 北京清华大学出版社[
2]徐小萍命题逻辑演绎推理在日常生活中的应用[A] 分类号:TO142文献标志码:A 文章编号:1009-2854(2007)11-0013-04 襄樊襄樊学院学报
[3]滕定明命题逻辑在语用研究中的应用[A] (分类号: H 030 文献标志码:A 文章编号: 16732-2804(2008) 032-00882-03)河北河北理工大学学报(社会科学版)
[4]刘海慧数理逻辑在生活中的应用研究[A] (分类号:O14 文献标识码:A 文章编号:1673-9795(2007)11(a)-0097-02) 山东中国科教创新导刊
举了例子,很难得的论文,请采纳,谢谢。还要的话联系我。生活中的逻辑摘要:理论形态的逻辑,对一般人说来,似乎是蒙着面纱神秘少女,看不清摸不着,即使通过老师的讲解,对于她的认识也只是停留在概念上的记忆却还是理解不透,无庸质疑逻辑在我们的生活中非常重要,理解逻辑学、锻炼我们的逻辑思维有着重大意义。一切理论都是对生活现象的提炼抽象,因此要想揭开逻辑神秘的面纱就要将逻辑学还原到我们的生活中去,理解我们生活中的逻辑。关键字:学习逻辑的意义 锻炼逻辑思维 生活 逻辑从小学起我们就学习数学,到了初中高中我们就开始学习物理、化学、生物、地理,这些被认为是我们生存所必须学习的基础学科,殊不知基础学科包括数学、逻辑学、天文学和天体物理学、地理科学和空间科学、物理学、化学、生命科学,但我们却从未系统的学过逻辑学,虽然如此但逻辑思维与人类为伴,渗透在社会生活的方方面面,无处不在,无时不在。伟大的政治家毛泽东曾说“逻辑是一门独立的学问,大家都要学一点。”逻辑学家金岳霖也说“逻辑对生活、认识和哲学都是必不可少的。”如果这些大家的话还不足已说明逻辑学的重要意义,那么我们可以从生活中举些事例出来。逻辑有点像随处可见的水,不显眼容易被忽略,但人人离不开它。我们说话的时候、写文章的时候,其实都用到了它,如果我们说话不讲逻辑就会意思表达不清楚造成歧义,我想大家对语文考试中修改病句的题型印象还是很深刻的,要把我们的思想正确地表达出来,第一件事情是要讲逻辑。不讲逻辑也许就会闹笑话,如“中国有世界上没有的万里长城”刚一听这句话觉得没有什么但仔细辨认一下就会发现问题“中国有”而“世界没有”这就是自相矛盾了。运用逻辑可以帮助我们解决问题,想必大家都听过这个例子:“有一天,一位外国使者看见林肯在擦自己的靴子,于是讽刺道:‘啊 ,先生,您真伟大!您经常擦自己的靴子吗?’‘是呀,’林肯答道:‘那么你是擦谁的靴子呢?’”。睿智的林肯聪明的运用逻辑化解了嘲讽。逻辑如此重要因此我们在学习和生活中不断锻炼自己的逻辑思维。首先在学习逻辑的理论知识上作为大学生我们有很好的外部环境,我们可以选修一些逻辑课程,可以有意识的去读一些逻辑相关书籍如黑格尔的《小逻辑》,比较通俗易懂的《趣味逻辑》、《生活中的逻辑与智慧》,还可以找一些练习题如《头脑风暴——逻辑思维》;除了看书听课我们也要留意发现身边的逻辑,大千世界、纷繁复杂只要有心我们就能挖掘生活中的逻辑问题。还记得爱因斯坦那个睿智的问题“ 爱因斯坦问他的学生:‘两个人从烟囱 里爬出去,一个满脸烟灰,一个干干净净,你认为哪一个该去洗澡?’‘当然 是脏的那个。’学生理所当然的说。‘不对,脏的那个看见对方干干净净,以为自己也不会脏, 哪里会去洗澡?’”逻辑是个深奥的东西,我发现不了上面的逻辑问题,但它却让我为那智慧倾倒。著名作家马克•吐温有一次在酒会上答记者问时说:“美国国会中的有些议员是狗婊子养的。”后来,他在《纽约时报》上刊登的“道歉启事”,从表面上看是“道歉”,其实,他所表达的意思同酒会上的话是一样的。马克•吐温的“美国国会中的有些议员是狗婊子养的”这句话,是一个具有“有些S是P”结构的特称肯定判断。后来的“道歉启事”中的“美国国会中的有些议员不是狗婊子养的”这句话,是一个具有“有些S不是P”结构的特称否定判断。从判断的对当关系可知:“有些S是P”和“有些S不是P”这两个判断是可以同真的。也就是说,即使“道歉启事”中所提出的“美国国会中的有些议员不是狗婊子养的”这个判断是真的,也并不意味着他在酒席上讲的“美国国会中的有些议员是狗婊子养的”这个判断就是假的。这样,马克•吐温就在所谓“道歉启事”中,以巧妙的方法继续表达了自己对华盛顿议员们的轻蔑。我们常看到这样的笑话:“以‘难过’造一句”。一学生答:“我们家前大水沟很难过”。题中“难过”应是指感情上难过,这学生将其偷换为“难以迈过”。这是逻辑上的偷换论题,违反了同一律。在课堂上老师让学生造一句话,其中要有‘糖’字。一小学生回答:“父亲在喝茶”。老师问:“糖在哪里?”学生回答:“在茶里,父亲喝的是加糖红茶。” 实际上该生将“糖字”偷换为吃的“糖”,违反了同一律。看电视剧时如果你不仅仅专注于剧情你会发现许多台词的逻辑错误,如有一古装电视剧,其中一幕:幼年皇帝接受完来人的跪拜后,太监忙说:“赐宴,快赐宴!”小皇帝慌乱中说:“快给他一块砚台!”小皇帝将“设宴款待”偷换为“给他块砚台”。这使我们印证了逻辑原理:小皇帝偷换概念,违反了同一律。又如我们熟悉的琼瑶剧《情深深雨朦朦》中依萍送书桓那幕,书桓说“八年抗战很快就过去了…”按剧情他怎么知道是八年啊。在一次管理学课上老师让我们做信息沟通的游戏试验,我们组拿到的是“他没有想象中那么爱你,但并不代表他不会全心全意地爱你。”作为第一个信息传递者,我就把这段话理解成了“也许他没有想中那么爱你,但他却是全心全意爱你”当时我还自信满满的认为很好的浓缩了一段长话,殊不知自己犯了一个很大的逻辑错误,把选择当成了肯定。对于我们的日常对话,只要仔细听,也时常能发现逻辑问题。甲:小李是可口可乐在中国的高级雇员。乙:那怎么可能,小李只喝百事可乐 。从这段话中乙的陈述隐含了一个前提“一般的,所有的高级职员只喝本公司的产品”。在上学期学的马克思基本原理中也广泛的涉及到逻辑理论,如著名的“白马非马论”在辨证法上是矛盾的普遍性和特殊性,在逻辑学上是内涵与外延的区分。我们经常在脑筋急转弯中问道“2加3在什么情况下等于5 ”我们会很快答道“在做错的情况下”这回答对大多数人来说不难,但如果要从逻辑学的角度回答恐怕没有几人能答出来,其实答案是:“如果1加1不等于2,那么,2加3不等于5。”这是一个充分条件假言判断。类似的一些测试题也可以这样处理,如:要是有人把月球塞进大西洋,你说应该用什么方法才能取出来呢?把月球塞进大西洋,这是完全不可能成立的。但是,既然这是个前提条件,答案就很简单了:你是怎么放进去的,我就怎么拿出来。显而易见,这是借助假言判断法这个思维工具才能解决的问题。在生活中只要我们多一分心思,随时注意观察分析,运用所学的逻辑知识去看待问题,久而久之,我们就会领会运用逻辑的技能,懂得在实际生活中如何运用逻辑去解决问题,就会优化自己的逻辑思维能力。参考文献:《趣味逻辑》¬——彭漪涟《生活中的逻辑与智慧》¬——张智光《考研逻辑试题与解析》¬——清华大学出版社
人工智能与现今逻辑学的发展-.〔摘要〕 本文认为,计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。至少在21世纪早期,逻辑学将重点关注下列论题:(1)如何在逻辑中处理常识推理的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的可错的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 〔关键词〕 人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑 现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。 本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。 实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理 的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题: ·效率和资源有限的推理; ·感知; ·做计划和计划再认; ·关于他人的知识和信念的推理; ·各认知主体之间相互的知识; ·自然语言理解; ·知识表示; ·常识的精确处理; ·对不确定性的处理,容错推理; ·关于时间和因果性的推理; ·解释或说明; ·对归纳概括以及概念的学习。[①] 21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。 我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 1.常识推理中的某些弗协调、非单调和容错性因素 AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②] “次协调逻辑”(Paraconsistent Logic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除 或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。 在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立: ?(Aù?A) Aù?A→B A→(?A→B) (AA)→B (AA)→?B A→A (?Aù(AúB))→B (A→B)→(?B→?A) 若以C0为经典逻辑,则系列C0, C1, C2,… Cn,… Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③] 非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的代理人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。 2.归纳以及其他不确定性推理 人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。 首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出着名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④] 有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤] 这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。 再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。 3.广义内涵逻辑 经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能” 、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。 大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。 在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的: 晨星必然是晨星, 晨星就是暮星, 所以,晨星必然是暮星。 这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。 一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如�,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥] 在各种内涵逻辑中,认识论逻辑(epistemic logic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要着作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。 4.对自然语言的逻辑研究 对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论 ,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。 自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦] 美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则: (1)数量准则:在交际过程中给出的信息量要适中。 a.给出所要求的信息量; b.给出的信息量不要多于所要求的信息量。 (2)质量准则:力求讲真话。 a.不说你认为假的东西。 b.不说你缺少适当证据的东西。 (3)关联准则:说话要与已定的交际目的相关联。 (4)方式准则:说话要意思明确,表达清晰。 a.避免晦涩生僻的表达方式; b.避免有歧义的表达方式; c.说话要简洁; d.说话要有顺序性。[⑧] 后来对这些原则提出了不少修正和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是: (i)S说了p; (ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则; (iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q; (iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q; (v)S无法阻止听话人H考虑q; (vi)因此,S意图让H考虑q,并在说p时意味着q。 试举二例: (1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。” (2)某教授写信推荐他的学生任某项哲学方面的工作,信中写到:“亲爱的先生:我的学生c的英语很好,并且准时上我的课。”根据量的准则,应该提供所需要的信息量;作为教授,他对自己的学生的情况显然十分熟悉,也可以提供所需要的信息量,但他有意违反量的准则,在信中只用一句话来介绍学生的情况,任用人一旦接到这封信,自然明白:教授认为c不宜从事这项哲学工作。 并且,语用涵义还具有如下5个特点:(i)可取消性:在给原话语附加上某些话语之后,它原有的语用涵义可被取消。在例(1)中,若b在说“前面拐角处有一个修车铺”之后又补上一句:“不过它这时已经关门了”,则原有的语用涵义“你可从那里得到汽油”就被取消了。(ii)不可分离性:如果某话语在特定的语境中产生了语用涵义,则无论采用什么样的同义结构,该含义始终存在,因为它所依附的是话语的内容,而不是话语的形式。(iii)可推导性,前面已说明这一点。(iv)非规约性:语用涵义不能单独从话语本身推出来,除要考虑交际合作原则之类的语用规则之外,也需要假定通常的逻辑推理规则,并需要把上文语句、交际双方所共有的背景知识作为附加前提考虑在内。(v)不确定性:同一句话语在不同的语境中可以产生不同的语用涵义。显然,确定某个话语的语用涵义是一个极其复杂的过程,需要综合和分析、归纳和演绎的统一应用,因此具有一定的或然性。研究如何迅速有效地把握自然语言表达式在具体语境中的语用涵义,这正是自然语言逻辑所要完成的任务之一,它将在21世纪取得进展。
273 浏览 4 回答
242 浏览 3 回答
167 浏览 5 回答
108 浏览 3 回答
293 浏览 5 回答
229 浏览 5 回答
180 浏览 6 回答
248 浏览 3 回答
218 浏览 3 回答
285 浏览 6 回答
99 浏览 3 回答
137 浏览 6 回答
244 浏览 4 回答
325 浏览 4 回答
263 浏览 4 回答